Aneuploidy accounts for a major proportion of human reproductive failures, mental and physical anomalies, and neoplasms. To heighten our understanding of normal and abnormal chromosome segregation, additional information is needed about the underlying molecular mechanisms of chromosome segregation. Although many hypotheses have been proposed for the etiology of human aneuploidy, there has not been general acceptance of any specific hypothesis. Moreover, it is important to recognize that many potential mechanisms exist whereby chromosome missegregation may occur. One area for investigating aneuploidy centers on the biochemical changes that take place during oocyte maturation. In this regard, recent results have shown that faulty mRNA of spindle-assembly checkpoint proteins and chromosome cohesion proteins may lead to aneuploidy. Also, postovulatory and in vitro aging of mouse oocytes has been shown to lead to decreased levels of Mad2 transcripts and elevated frequencies of premature centromere separation. The intent of this review is to highlight the major events surrounding chromosome segregation and to present the published results that support the premise that faulty chromosome cohesion proteins and spindle checkpoint proteins compromise accurate chromosome segregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.20412 | DOI Listing |
Front Plant Sci
December 2024
College of Life Sciences, Gannan Normal University, Ganzhou, China.
Introduction: Chinese kale ( var. alboglabra), is an annual herb belonging to the Brassica genus of Cruciferae, and is one of the famous specialty vegetables of southern China. Some varieties show bright green leaf (BGL) traits and have better commerciality.
View Article and Find Full Text PDFIn meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II.
View Article and Find Full Text PDFMol Breed
January 2025
Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China.
Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
Karyotype changes are a formidable evolutionary force by directly impacting cross-incompatibility, gene dosage, genetic linkage, chromosome segregation, and meiotic recombination landscape. These changes often arise spontaneously and are commonly detected within plant lineages, even between closely related accessions. One element that can influence drastic karyotype changes after only one (or few) plant generations is the alteration of the centromere position, number, distribution, or even its strength.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
Background: Chromosomal instability (CIN), a hallmark of cancer, is commonly linked to poor prognosis in high-grade prostate cancer (PCa). Paradoxically, excessively high levels of CIN may impair cancer cell viability. Consequently, understanding how tumours adapt to CIN is critical for identifying novel therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!