This study provides the first evidence of pronounced temporary laryngeal descent in a bovid species. An elaborate acoustic display is prominent in male courtship behavior of polygynous Mongolian gazelle. During rut, rounding up of females is accompanied by continuous head-up barking by dominant males. Throughout the rut their evolutionarily enlarged larynx descends to a low mid-neck resting position. In the course of each bark the larynx is additionally retracted toward the sternum by 30% of the resting vocal tract length. A geometric model of active larynx movements was constructed by combining results of video documentation, dissection, skeletonization, and behavioral observation. The considerable distance between resting position and maximal laryngeal descent suggests a backward tilting of the hyoid apparatus and an extension of the thyrohyoid connection during the retraction phase. Return to the resting position is effected by strap muscles and by the elastic recoil of the pharynx and the thyrohyoid connection. An intrapharyngeal inflation of the peculiar palatinal pharyngeal pouch of adult males is inferred from a short-time expansion of the ventral neck region rostral to the laryngeal prominence. The neck of adult dominant males is accentuated by long gray guard hairs during the rut. The passive swinging of the heavy larynx of adult males during locomotion gives the impression of a handicap imposed on rutting males. Apparently, this disadvantage becomes outweighed by the profits for reproductive success.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.10656 | DOI Listing |
Parasitology
December 2024
Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
The migration of Mongolian gazelles () poses a potential risk of outbreak for zoonotic intestinal protozoan parasite infections. This study aims to investigate the infection status of zoonotic intestinal protozoan parasites in these migratory Mongolian gazelles. We collected 120 fecal samples from Mongolian gazelles during their migration from Mongolia to China in December 2023.
View Article and Find Full Text PDFBMC Genomics
August 2023
College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China.
Ecology
July 2023
Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany.
Long-distance movements are hypothesized to positively influence population size and stability of mobile species. We tested this hypothesis with a novel modeling approach in which moving herbivores interact with the environment created by a dynamic global vegetation model using highly mobile Mongolian gazelles in the eastern Mongolian grasslands as a case study. Gazelle population dynamics were modeled from 1901 to 2018 under two scenarios, one allowing free movement and one restricting movement.
View Article and Find Full Text PDFFront Microbiol
March 2022
College of Life Sciences, Qufu Normal University, Qufu, China.
The existence of man-made facilities such as pasture fences makes the grassland ecosystem fragmented and endangers the survival of local wild animals. The Mongolian gazelle is highly sensitive to hunting and habitat destruction, and is one of the most threatened artiodactyls in Eurasia. It provides a critical model to studying gut microbiota under fragmented habitats.
View Article and Find Full Text PDFEcol Lett
May 2022
Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA.
From micro to planetary scales, spatial heterogeneity-patchiness-is ubiquitous in ecosystems, defining the environments in which organisms move and interact. However, most large-scale models still use spatially averaged 'mean fields' to represent natural populations, while fine-scale spatially explicit models are mostly restricted to particular organisms or systems. In a conceptual paper, Grünbaum (2012, Interface Focus 2: 150-155) introduced a heuristic, based on three dimensionless ratios quantifying movement, reproduction and resource consumption, to characterise patchy ecological interactions and identify when mean-field assumptions are justifiable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!