Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The nuclear medical imaging methods, positron emission tomography (PET) and single photon emission computed tomography (SPECT), utilize the detection of gamma rays leaving the body after a radioactive tracer has been administered. The sensitivity of PET allows the detection of picomolar tracer amounts in vivo and current technology offers millimeter (PET) or submillimeter (SPECT) spatial resolution. These techniques are used in clinical and preclinical applications. The basic principles of gamma ray detection and image generation in PET and SPECT are summarized in this chapter. Furthermore, effects causing degradation of image quality are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-540-72718-7_3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!