Glycolysis, an ancient energy-processing pathway, can operate either under an efficient but slow regime or, alternatively, under a dissipative but fast-working regime. Trading an increase in efficiency for a decrease in rate represents a cooperative behavior, while a dissipative metabolism can be regarded as a cheating strategy. Herein, using irreversible thermodynamic principles and methods derived from game theory, we investigate whether, and under what conditions, the interplay between these two metabolic strategies may have promoted the clustering of undifferentiated cells. In the current model, multicellularity implies the loss of motility, which represents a hindrance rather than a improvement when competing with mobile single-celled organisms. Despite that, when considering glycolysis as the only energy-processing pathway, we conclude that cells endowed with a low basal anabolic metabolism may have benefited from clustering when faced to compete with cells exhibiting a high anabolic activity. The current results suggest that the transition to multicellularity may have taken place much earlier than hitherto thought, providing support for an extended period of Precambrian metazoan diversification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-008-9128-y | DOI Listing |
Aquat Toxicol
January 2021
iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007, Uppsala, Sweden. Electronic address:
Antimicrobials, such as fungicides and antibiotics, pose a risk for microbial decomposers (i.e., bacteria and aquatic fungi) and invertebrate detritivores (i.
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2021
iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, Uppsala SWE-75007, Sweden. Electronic address:
Fungicides pose a risk for crustacean leaf shredders serving as key-stone species for leaf litter breakdown in detritus-based stream ecosystems. However, little is known about the impact of strobilurin fungicides on shredders, even though they are presumed to be the most hazardous fungicide class for aquafauna. Therefore, we assessed the impact of the strobilurin azoxystrobin (AZO) on the survival, energy processing (leaf consumption and feces production), somatic growth (growth rate and molting activity), and energy reserves (neutral lipid fatty and amino acids) of the amphipod crustacean Gammarus fossarum via waterborne exposure and food quality-mediated (through the impact of leaf colonizing aquatic microorganisms) and thus indirect effects using 2 × 2-factorial experiments over 24 days.
View Article and Find Full Text PDFAquat Toxicol
May 2020
iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007, Uppsala, Sweden. Electronic address:
Antibiotics may constitute a risk for aquatic detritivorous macroinvertebrates (i.e., shredders) via waterborne and dietary antibiotic exposure.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
June 2020
School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
In this review, we provide evidence to suggest that the cost of specific mtDNA mutations can be influenced by exogenous factors. We focus on macronutrient-mitochondrial DNA interactions as factors that may differentially influence the consequences of a change as mitochondria must be flexible in its utilization of dietary proteins, carbohydrates, and fats. To understand this fundamental dynamic, we briefly discuss the energy processing pathways in mitochondria.
View Article and Find Full Text PDFAutism Res
September 2018
State University of New York Upstate Medical University, Departments of Neuroscience and Physiology, Syracuse, NY.
Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, including buccal sensory sensitivity, taste and texture aversions, speech apraxia, and salivary transcriptome alterations. Furthermore, the oropharynx represents the sole entry point to the gastrointestinal (GI) tract. GI disturbances and alterations in the GI microbiome are established features of ASD, and may impact behavior through the "microbial-gut-brain axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!