This study aimed to investigate the influence of low-power gallium-aluminium-arsenide (GaAlAs) laser [830 nm, continuous wave (CW), 40 mW and fluence 4 J/cm(2)] on the healing of surgically created bone defects in rats treated with bioactive glass graft material. Surgical bone defects were created in the mandibles of 36 Wistar rats divided into two groups, each consisting of 18 rats. Group I was treated with bioactive glass plus laser irradiation. Group II was treated with graft material only. The animals were killed at 4 weeks, 8 weeks and 12 weeks postoperatively for histological examination. Laser irradiation had significantly accelerated bone healing at 4 weeks and 8 weeks in comparison with that at the sites not irradiated. However at 12 weeks, complete healing of the defects had occurred with no difference detected. Our results have confirmed the positive effect of soft laser in accelerating bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-008-0590-yDOI Listing

Publication Analysis

Top Keywords

bioactive glass
12
bone defects
12
weeks weeks
12
soft laser
8
bone regeneration
8
treated bioactive
8
graft material
8
group treated
8
laser irradiation
8
bone
6

Similar Publications

The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.

View Article and Find Full Text PDF

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues.

View Article and Find Full Text PDF

A photo-thermal dual crosslinked chitosan-based hydrogel membrane for guided bone regeneration.

Int J Biol Macromol

January 2025

Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:

Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.

View Article and Find Full Text PDF

Bone is a dynamic tissue that serves several purposes in the human body, including storing calcium, forming blood cells, and protecting and supporting the body's organs. Alkaline phosphatase (ALP) is secreted into the circulation by osteoblasts, the cells responsible for making bone. It attaches to the surface of osteoblast cells or matrix vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!