A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical models and patient predictors of readmission for heart failure: a systematic review. | LitMetric

Background: Readmission after heart failure (HF) hospitalization is an increasing focus for physicians and policy makers, but statistical models are needed to assess patient risk and to compare hospital performance. We performed a systematic review to describe models designed to compare hospital rates of readmission or to predict patients' risk of readmission, as well as to identify studies evaluating patient characteristics associated with hospital readmission, all among patients admitted for HF.

Methods: We identified relevant studies published between January 1, 1950, and November 19, 2007, by searching MEDLINE, Scopus, PsycINFO, and all 4 Ovid Evidence-Based Medicine Reviews. Eligible English-language publications reported on readmission after HF hospitalization among adult patients. We excluded experimental studies and publications without original data or quantitative outcomes.

Results: From 941 potentially relevant articles, 117 met inclusion criteria: none contained models to compare readmission rates among hospitals, 5 (4.3%) presented models to predict patients' risk of readmission, and 112 (95.7%) examined patient characteristics associated with readmission. Studies varied in case identification, used multiple types of data sources, found few patient characteristics consistently associated with readmission, and examined differing outcomes, often either readmission alone or a combined outcome of readmission or death, measured across varying periods (from 14 days to 4 years). Two articles reported model discriminations of patient readmission risk, both of which were modest (C statistic, 0.60 for both).

Conclusions: Our systematic review identified no model designed to compare hospital rates of readmission, while models designed to predict patients' readmission risk used heterogeneous approaches and found substantial inconsistencies regarding which patient characteristics were predictive. Clinically, patient risk stratification is challenging. From a policy perspective, a validated risk-standardized statistical model to accurately profile hospitals using readmission rates is unavailable in the published English-language literature to date.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archinte.168.13.1371DOI Listing

Publication Analysis

Top Keywords

readmission
16
patient characteristics
16
systematic review
12
compare hospital
12
predict patients'
12
statistical models
8
patient
8
readmission heart
8
heart failure
8
patient risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!