An early feature of Alzheimer's disease (AD) is region-specific declines in brain glucose metabolism. Unlike other tissues in the body, the brain does not efficiently metabolize fats; hence the adult human brain relies almost exclusively on glucose as an energy substrate. Therefore, inhibition of glucose metabolism can have profound effects on brain function. The hypometabolism seen in AD has recently attracted attention as a possible target for intervention in the disease process. One promising approach is to supplement the normal glucose supply of the brain with ketone bodies (KB), which include acetoacetate, beta-hydroxybutyrate, and acetone. KB are normally produced from fat stores when glucose supplies are limited, such as during prolonged fasting. KB have been induced both by direct infusion and by the administration of a high-fat, low-carbohydrate, low-protein, ketogenic diets. Both approaches have demonstrated efficacy in animal models of neurodegenerative disorders and in human clinical trials, including AD trials. Much of the benefit of KB can be attributed to their ability to increase mitochondrial efficiency and supplement the brain's normal reliance on glucose. Research into the therapeutic potential of KB and ketosis represents a promising new area of AD research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084248 | PMC |
http://dx.doi.org/10.1016/j.nurt.2008.05.004 | DOI Listing |
Mol Cell
January 2025
Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China. Electronic address:
Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells.
View Article and Find Full Text PDFLife (Basel)
January 2025
Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City 14269, Mexico.
Background: The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease.
Objective: This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases.
Biomedicines
January 2025
Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
Background: The 3-hydroxybutyrate dehydrogenase 1 (BDH1) mainly participates in the regulation of milk fat synthesis and ketone body synthesis in mammary epithelial cells. In our previous study, BDH1 was identified as a key candidate gene regulating lipid metabolism in mammary glands of dairy goats by RNA-seq. This study aimed to investigate the effect of BDH1 on lipid metabolism in mammary epithelial cells of dairy goats (GMECs).
View Article and Find Full Text PDFGenomics
January 2025
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Electronic address:
The transition period from late pregnancy to early lactation in dairy cows involves significant metabolic changes to cope with the challenges related to energy metabolism. Muscle tissue, as the largest energy-metabolizing tissue in dairy cows, plays a crucial role in energy metabolism. Furthermore, circular RNAs (circRNAs) have been shown to play key roles in various biological events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!