This study investigates involvement of beta-catenin signalling in regulation of p-glycoprotein (p-gp) expression in endothelial cells derived from brain vasculature. Pharmacological interventions that enhance or that block beta-catenin signalling were applied to primary rat brain endothelial cells and to immortalized human brain endothelial cells, hCMEC/D3, nuclear translocation of beta-catenin being determined by immunocytochemistry and by western blot analysis to confirm effectiveness of the manipulations. Using the specific glycogen synthase kinase-3 (GSK-3) inhibitor 6-bromoindirubin-3'-oxime enhanced beta-catenin and increased p-gp expression including activating the MDR1 promoter. These increases were accompanied by increases in p-gp-mediated efflux capability as observed from alterations in intracellular fluorescent calcein accumulation detected by flow cytometry. Similar increases in p-gp expression were noted with other GSK-3 inhibitors, i.e. 1-azakenpaullone or LiCl. Application of Wnt agonist [2-amino-4-(3,4-(methylenedioxy) benzylamino)-6-(3-methoxyphenyl)pyrimidine] also enhanced beta-catenin and increased transcript and protein levels of p-gp. By contrast, down-regulating the pathway using Dickkopf-1 or quercetin decreased p-gp expression. Similar changes were observed with multidrug resistance protein 4 and breast cancer resistance protein, both known to be present at the blood-brain barrier. These results suggest that regulation of p-gp and other multidrug efflux transporters in brain vasculature can be influenced by beta-catenin signalling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303914 | PMC |
http://dx.doi.org/10.1111/j.1471-4159.2008.05537.x | DOI Listing |
Cell Transplant
January 2025
Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien.
Leucine-rich repeat-containing G-protein-coupled receptors regulate stem cell activity and tissue homeostasis within female reproductive organs, primarily through their interaction with the Wnt/β-catenin signaling pathway. LGR4-6 are increasingly recognized for their roles in organ development, regeneration, and cancer. This review aims to provide a comprehensive overview of the roles of LGR4-6 in female reproductive organs, highlighting their significance in normal physiology and disease states, specifically in the context of ovarian cancer.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.
View Article and Find Full Text PDFWorld J Hepatol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, Guangdong Province, China.
In this review, we explore the application of next-generation sequencing in liver cancer research, highlighting its potential in modern oncology. Liver cancer, particularly hepatocellular carcinoma, is driven by a complex interplay of genetic, epigenetic, and environmental factors. Key genetic alterations, such as mutations in , , and , alongside epigenetic modifications such as DNA methylation and histone remodeling, disrupt regulatory pathways and promote tumorigenesis.
View Article and Find Full Text PDFLife Med
June 2024
Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China.
Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
January 2025
Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, China.
Objectives: The osteogenic potential of periodontal ligament stem cells (PDLSCs) is crucial for periodontal tissue regeneration. Prolonged and excessive oxidative stress (OS) impairs the osteogenic function of PDLSCs. Recently, Semaphorin 3A (Sema3A) has been reported to have multiple roles in bone protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!