Systematic comparison of the current repertoire of virulence-associated genes for three Pseudomonas syringae strains with complete genome sequences, P. syringae pv. tomato DC3,000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a, is prompted by recent advances in virulence factor identification in P. syringae and other bacteria. Among these are genes linked to epiphytic fitness, plant- and insect-active toxins, secretion pathways, and virulence regulators, all reflected in the recently updated DC3,000 genome annotation. Distribution of virulence genes in relation to P. syringae genome organization was analyzed to distinguish patterns of conservation among genomes and association between genes and mobile genetic elements. Variable regions were identified on the basis of deviation in sequence composition and gaps in syntenic alignment among the three genomes. Mapping gene location relative to the genome structure revealed strong segregation of the HrpL regulon with variable genome regions (VR), divergent distribution patterns for toxin genes depending on association with plant or insect pathogenesis, and patterns of distribution for other virulence genes that highlight potential sources of strain-to-strain differences in host interaction. Distribution of VR among other sequenced bacterial genomes was analyzed and future plans for characterization of this potential reservoir of virulence genes are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-21-6-0685 | DOI Listing |
Am J Trop Med Hyg
January 2025
Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.
Melioidosis is a neglected tropical infection caused by the Gram-negative bacterium Burkholderia pseudomallei, which is found in soil and water across tropical countries. The infection spectrum ranges from mild localized lesions to severe sepsis. The clinical presentation, severity, and outcome are influenced by the route of infection, bacterial load, strain virulence, and specific virulence genes of B.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India.
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
SUMMARYThe human malaria parasite is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen.
View Article and Find Full Text PDFmBio
January 2025
Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2.
View Article and Find Full Text PDFClin Genet
January 2025
Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China.
The pathogenicity of cholestatic liver diseases (CLDs) remains insufficiently characterized, hindering definitive diagnosis and timely treatment. The aim of this study was to improve the pathogenicity prediction of novel bile acid (BA) transporter variants in patients with CLDs. We analyzed the clinical characteristics and genetic profiles of a CLD cohort (n = 57) using multiple in silico tools and in vitro functional assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!