Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases.

Inflamm Bowel Dis

Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0696, USA.

Published: November 2008

Probiotics are defined as nonpathogenic living microorganisms, including some commensal bacterial flora, which have beneficial effects on host health and disease prevention and/or treatment. Clinical trials have shown beneficial effects of probiotics on several human diseases, such as inflammatory bowel diseases (IBDs), which are among the most-studied diseases testing probiotics as a potential therapy. However, a significant question regarding clinical use of probiotics is the mechanism underlying the wide range of actions. Studies discussed in this review suggest 3 distinct cellular and molecular mechanisms for probiotic regulation in IBD therapy: 1) Probiotics block pathogenic bacterial effects by producing bactericidal substances and competing with pathogens and toxins for adherence to the intestinal epithelium; 2) Probiotics regulate immune responses by enhancing the innate immunity and modulating pathogen-induced inflammation via toll-like receptor-regulated signaling pathways; and 3) Probiotics regulate intestinal epithelial homeostasis by promoting intestinal epithelial cell survival, enhancing barrier function, and stimulating protective responses. Probiotics modulate host cell signaling pathways, including Akt, mitogen-activated protein kinases, and nuclear factor-kappaB to mediate these intestinal epithelial functions. It is hoped that developing a mechanistic understanding of probiotic action will provide the rationale to support the development of new hypothesis-driven studies to define the clinical efficacy in preventive, adjunctive, or alternative treatments for IBD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ibd.20525DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
12
mechanisms probiotic
8
probiotic action
8
inflammatory bowel
8
bowel diseases
8
probiotics
8
beneficial effects
8
probiotics regulate
8
signaling pathways
8
action implications
4

Similar Publications

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.

View Article and Find Full Text PDF

The diagnosis of intestinal injury remains a challenge as it is rare in occurrence and transpires in multiple traumatized patients. The deferred finding of injury of intestines upsurges multiple risks such as septicemia, numerous organ failures as well as mortality. In this review, we corroborate with the goals of proposing surrogate biomarkers that consent to the measurement of the permeability of intestines more effortlessly.

View Article and Find Full Text PDF

Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.

Mol Med

January 2025

Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.

The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.

View Article and Find Full Text PDF

Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.

View Article and Find Full Text PDF

Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning.

Nat Commun

January 2025

Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!