Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sex-determining genes of fungi reside at one or two specialised regions of the chromosome known as the mating type (MAT) loci. The genes are sufficient to determine haploid cell identity, enable compatible mating partners to attract each other, and prepare cells for sexual reproduction after fertilisation. How conserved are these genes in different fungal groups? New work1 seeks an answer to this question by identifying the sex-determining regions of an early diverged fungus. These regions bear remarkable similarity to those described in other fungi, but the sex proteins they encode belong to only a single class of transcription factor, the high mobility group (HMG), indicating that these are likely to be ancestral to other proteins recruited for fungal sex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.20782 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!