Rare sugar D-allose induces programmed cell death in hormone refractory prostate cancer cells.

Apoptosis

Division of Life Science, Applied Life Science (Brain Korea 21 and EB-NCRC), Gyeongsang National University, Jinju 660-701, South Korea.

Published: September 2008

Development of effective agents for treatment of hormone-refractory prostate cancer (HRPC) has become a national medical priority. D-Allose is a monosaccharide (C-3 epimer of glucose) distributed rarely in nature; because of its scarcity and cost, the biological effect has hardly been studied. In the present study, we demonstrated the inhibitory action of D-allose on proliferation of human HRPC cell lines, DU145 and PC-3 in a dose- and time-dependent manner, while human normal prostate epithelial (NPE) cell line, PrEC showed no remarkable effect. In vitro treatment of D-allose resulted in the alteration of Bcl-2/Bax ratio in favor of apoptosis (programmed cell death, PCD) in both the HRPC cell lines, which was associated with the lowering of mitochondrial transmembrane potential (Deltapsi(m)) and the release of cytochrome C (cyt C), the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP), and the elevation of calcium concentration in cytosol ([Ca(2+)](c)). D-Allose also induced G1 phase arrest of the cell cycle in DU145 cell line. This study for the first time suggested the antiproliferative effect of D-allose through induction of PCD in HRPC cell lines, which could be due to the modulation of mitochondria mediated intrinsic apoptotic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-008-0232-7DOI Listing

Publication Analysis

Top Keywords

hrpc cell
12
cell lines
12
cell
8
programmed cell
8
cell death
8
prostate cancer
8
pcd hrpc
8
d-allose
6
rare sugar
4
sugar d-allose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!