Potassium channels switch between closed and open conformations and selectively conduct K(+) ions. There are at least two gates. The TM2 bundle at the intracellular site is the primary gate of KcsA, and rearrangements at the selectivity filter (SF) act as the second gate. The SF blocks ion flow via an inactivation process similar to C-type inactivation of voltage-gated K(+) channels. We recently generated the open-state conformation of the KcsA channel. We found no major, possibly inactivating, structural changes in the SF associated with this massive inner-pore rearrangement, which suggests that the gates might act independently. Here we energy-minimize the open state of wild-type and mutant KcsA, validating in silico structures of energy-minimized SFs by comparison with crystallographic structures, and use these data to gain insight into how mutation, ion depletion, and K(+) to Na(+) substitution influence SF conformation. Both E71 or D80 protonations/mutations and the presence/absence of protein-buried water molecule(s) modify the H-bonding network stabilizing the P-loops, spawning numerous SF conformations. We find that the inactivated state corresponds to conformations with a partially unoccupied or an entirely empty SF. These structures, involving modifications in all four P-loops, are stabilized by H-bonds between amide H and carbonyl O atoms from adjacent P-loops, which block ion passage. The inner portions of the P-loops are more rigid than the outer parts. Changes are localized to the outer binding sites, with innermost site S4 persisting in the inactivated state. Strong binding by Na(+) locally contracts the SF around Na(+), releasing ligands that do not participate in Na(+) coordination, and occluding the permeation pathway. K(+) selectivity primarily appears to arise from the inability of the SF to completely dehydrate Na(+) ions due to basic structural differences between liquid water and the "quasi-liquid" SF matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547464PMC
http://dx.doi.org/10.1529/biophysj.108.136556DOI Listing

Publication Analysis

Top Keywords

selectivity filter
8
kcsa channel
8
inactivated state
8
na+
5
conformational changes
4
changes selectivity
4
filter open-state
4
kcsa
4
open-state kcsa
4
channel energy
4

Similar Publications

Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives.

Macromol Rapid Commun

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.

Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.

View Article and Find Full Text PDF

The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.

View Article and Find Full Text PDF

Feature selection (FS) is a significant dimensionality reduction technique, which can effectively remove redundant features. Metaheuristic algorithms have been widely employed in FS, and have obtained satisfactory performance, among them, grey wolf optimizer (GWO) has received widespread attention. However, the GWO and its variants suffer from limited adaptability, poor diversity, and low accuracy when faced with high-dimensional data.

View Article and Find Full Text PDF

Burkholderia cenocepacia outbreak linked to taps in a neonatal intensive care unit.

Infect Dis Health

December 2024

Infection Prevention and Epidemiology, Monash Health, Clayton Australia; Monash University, Clayton, Australia; South East Public Health Unit, Monash Health, Clayton, Australia.

Background: Burkholderia cenocepacia complex is an important cause of hospital acquired infections. We describe the management of an outbreak in a neonatal intensive care unit (NICU) due to tap colonisation.

Methods: Microbiological testing of touch (n = 26) and non-touch taps (n = 28), sinks and drains, including genomic sequencing of selected isolates.

View Article and Find Full Text PDF

Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!