Scrapie prion protein structural constraints obtained by limited proteolysis and mass spectrometry.

J Mol Biol

Prion Research Unit, School of Medicine, University of Santiago de Compostela, Rúa de San Francisco, s/n 15782 Santiago de Compostela, Galicia, Spain.

Published: September 2008

Elucidation of the structure of scrapie prion protein (PrP(Sc)), essential to understand the molecular mechanism of prion transmission, continues to be one of the major challenges in prion research and is hampered by the insolubility and polymeric character of PrP(Sc). Limited proteolysis is a useful tool to obtain insight on structural features of proteins: proteolytic enzymes cleave proteins more readily at exposed sites, preferentially within loops, and rarely in beta-strands. We treated PrP(Sc) isolated from brains of hamsters infected with 263K and drowsy prions with varying concentrations of proteinase K (PK). After PK deactivation, PrP(Sc) was denatured, reduced, and cleaved at Cys179 with 2-nitro-5-thiocyanatobenzoic acid. Fragments were analyzed by nano-HPLC/mass spectrometry and matrix-assisted laser desorption/ionization. Besides the known cleavages at positions 90, 86, and 92 for 263K prions and at positions 86, 90, 92, 98, and 101 for drowsy prions, our data clearly demonstrate the existence of additional cleavage sites at more internal positions, including 117, 119, 135, 139, 142, and 154 in both strains. PK concentration dependence analysis and limited proteolysis after partial unfolding of PrP(Sc) confirmed that only the mentioned cleavage sites at the N-terminal side of the PrP(Sc) are susceptible to PK. Our results indicate that besides the "classic" amino-terminal PK cleavage points, PrP(Sc) contains, in its middle core, regions that show some degree of susceptibility to proteases and must therefore correspond to subdomains with some degree of structural flexibility, interspersed with stretches of amino acids of high resistance to proteases. These results are compatible with a structure consisting of short beta-sheet stretches connected by loops and turns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.06.070DOI Listing

Publication Analysis

Top Keywords

limited proteolysis
12
scrapie prion
8
prion protein
8
drowsy prions
8
cleavage sites
8
prpsc
7
protein structural
4
structural constraints
4
constraints limited
4
proteolysis mass
4

Similar Publications

Aflibercept and brolucizumab, two anti-VEGF agents used as intravitreal injections in ophthalmology, differ significantly in molecular weight (aflibercept-115 kDa and brolucizumab-26 kDa). Using aqueous humor samples collected after drug administration, we measured and performed a comparative analysis of pharmacokinetics and half-lives of these drugs in the human eye. Since the quantification of monoclonal antibodies (mAbs) using antigen-antibody reactions, such as ELISA, is influenced by endogenous ligands or anti-drug antibodies, we employed nano-surface and molecular-orientation limited proteolysis (nSMOL), combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), for accurate measurements.

View Article and Find Full Text PDF

Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered.

View Article and Find Full Text PDF

Unleashing the Power of Covalent Drugs for Protein Degradation.

Med Res Rev

January 2025

Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.

Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions.

View Article and Find Full Text PDF

Organisms have evolved protective strategies that are geared toward limiting cellular damage and enhancing organismal survival in the face of environmental stresses, but how these protective mechanisms are coordinated remains unclear. Here, we define a requirement for neural activity in mobilizing the antioxidant defenses of the nematode both during prolonged oxidative stress and prior to its onset. We show that acetylcholine-deficient mutants are particularly vulnerable to prolonged oxidative stress.

View Article and Find Full Text PDF

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!