Enterocin AS-48 is a broad-spectrum cyclic antimicrobial peptide produced by Enterococcus faecalis. In the present study, the bacteriocin was tested alone and in combination with other antimicrobials for decontamination of Bacillus inoculated on alfalfa, soybean sprouts and green asparagus. Washing with enterocin AS-48 solutions reduced viable cell counts of Bacillus cereus and Bacillus weihenstephanensis by 1.0-1.5 and by 1.5-2.38 log units right after application of treatment, respectively. In both cases, the bacteriocin was effective in reducing the remaining viable population below detection levels during further storage of the samples at 6 degrees C, but failed to prevent regrowth in samples stored at 15 or 22 degrees C. Application of washing treatments containing enterocin AS-48 in combination with several other antimicrobials and sanitizers (cinnamic and hydrocinnamic acids, carvacrol, polyphosphoric acid, peracetic acid, hexadecylpyridinium chloride and sodium hypochlorite) greatly enhanced the bactericidal effects. The combinations of AS-48 and sodium hypochlorite, peracetic acid or hexadecylpyridinium chloride provided the best results. After application of the combined treatments on alfalfa sprouts contaminated with B. cereus or with B. weihenstephanensis, viable bacilli were not detected or remained at very low concentrations in the treated samples during a 1-week storage period at 15 degrees C. Inhibition of B. cereus by in situ produced bacteriocin was tested by cocultivation with the AS-48 producer strain E. faecalis A-48-32 inoculated on soybean sprouts. Strain A-48-32 was able to grow and produce bacteriocin on sprouts both at 15 and 22 degrees C. At 15 degrees C, growth of B. cereus was completely inhibited in the cocultures, while a much more limited effect was observed at 22 degrees C. The results obtained for washing treatments are very encouraging for the application of enterocin AS-48 in the decontamination of sprouts. Application of washing treatments containing AS-48 alone can serve to reduce viable cell counts of bacilli in samples stored under refrigeration, while application of combined treatments should be recommended to avoid proliferation of the surviving bacilli under temperature-abuse conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2008.05.001DOI Listing

Publication Analysis

Top Keywords

enterocin as-48
20
application washing
12
combination antimicrobials
12
washing treatments
12
bacillus cereus
8
cereus bacillus
8
bacillus weihenstephanensis
8
as-48
8
as-48 combination
8
bacteriocin tested
8

Similar Publications

The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.

View Article and Find Full Text PDF

In our study, the secretome of the clinical isolate Enterococcus faecalis HY7 displayed antibacterial activity against the vancomycin-resistant Enterococcus faecalis V853. These bacteriocin-like substances showed thermal stability at a wide range of temperatures up to 121 °C, while proteinase K treatment resulted in a total loss of their activity. PCR-based screening for bacteriocin biosynthetic genes revealed that Enterococcus faecalis HY7 harbored multiple enterocin-producing genes, including ent A, avc A, and as-48.

View Article and Find Full Text PDF

Engineering circular bacteriocins: structural and functional effects of α-helix exchanges and disulfide introductions in circularin A.

Front Microbiol

February 2024

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.

Circular bacteriocins form a distinct group of antimicrobial peptides (AMPs) characterized by their unique head-to-tail ligated circular structure and functional properties. They belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) family. The ribosomal origin of these peptides facilitates rapid diversification through mutations in the precursor genes combined with specific modification enzymes.

View Article and Find Full Text PDF

Enterocins Produced by Enterococci Isolated from Breast-Fed Infants: Antilisterial Potential.

Children (Basel)

February 2024

Department of Food Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain.

Enterocins are bacteriocins synthesized by strains that show an interesting antimicrobial effectiveness against foodborne pathogens such as . The objectives of this study were to identify and analyze the expression of enterocin genes of isolated from breast-fed infants and evaluate their ability to inhibit three human isolates of virulent , as well as some probiotic bacteria. The susceptibility of the strains of to fifteen antibiotics was tested, detecting their resistance to cefoxitin (constitutively resistant), oxacillin, and clindamycin.

View Article and Find Full Text PDF

Microbes live within complex communities of interacting populations, either free-living in waters and soils or symbionts of animals and plants. Their interactions include the production of antimicrobial peptides (bacteriocins) to antagonize competitors, and these producers must carry their own immunity gene for self-protection. Whether other coexisting populations are sensitive or resistant to the bacteriocin producer will be key for the population dynamics within the microbial community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!