AI Article Synopsis

  • The integrase protein (IN) is crucial for integrating retroviral DNA into host chromosomes, and studies demonstrated that HIV-1 and HIV-2 IN proteins can efficiently facilitate this process.
  • Both HIV IN proteins, despite only 53% similarity in their amino acid sequences, equally cut and integrate the viral DNA into target DNA.
  • The mechanism is nuanced, as IN initially binds nonspecifically to DNA, but then shows specificity in cutting and integrating, suggesting that in a cellular context, IN is effectively positioned to work with viral DNA without interference from unrelated DNA.

Article Abstract

Integration of retroviral DNA into the host chromosome requires the integrase protein (IN). We overexpressed the IN proteins of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) in E. coli and purified them. Both proteins were found to specifically cut two nucleotides off the ends of linear viral DNA, and to integrate viral DNA into target DNA. This demonstrates that HIV IN is the only protein required for integration of HIV DNA. Although the two types of IN proteins have only 53% amino acid sequence similarity, they act with equal efficiency on both type 1 and type 2 viral DNA. Binding of IN to DNA was tested: purified IN does not bind very specifically to viral DNA ends. Nevertheless, only viral DNA ends are cleaved and integrated. We interpret this as follows: in vitro quick aspecific binding to DNA is followed by slow specific cutting and integration. IN can not find viral DNA ends in the presence of an excess of aspecific DNA; in vivo this is not required since the IN protein is in constant proximity of viral DNA in the viral core particle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC328469PMC
http://dx.doi.org/10.1093/nar/19.14.3821DOI Listing

Publication Analysis

Top Keywords

viral dna
28
dna
14
dna ends
12
dna binding
8
proteins human
8
human immunodeficiency
8
immunodeficiency viruses
8
viruses types
8
viral
8
binding dna
8

Similar Publications

Current guidelines to prevent hepatocellular carcinoma (HCC) by chronic hepatitis B virus (HBV) infection are based on risk assessments that include age, sex, and virological and biochemical parameters. The study aim was to investigate the impact of predictive markers on long-term outcomes. The clinical outcomes of 100 patients with chronic hepatitis B were investigated 30 years after a baseline assessment that included liver biopsy.

View Article and Find Full Text PDF

An evolved, orthogonal ssDNA generator for targeted hypermutation of multiple genomic loci.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Achieving targeted hypermutation of specific genomic sequences without affecting other regions remains a key challenge in continuous evolution. To address this, we evolved a T7 RNA polymerase (RNAP) mutant that synthesizes single-stranded DNA (ssDNA) instead of RNA in vivo, while still exclusively recognizing the T7 promoter. By increasing the error rate of the T7 RNAP mutant, it generates mutated ssDNA that recombines with homologous sequences in the genome, leading to targeted genomic hypermutation.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Objective: This study aimed to uncover the patterns of Human papillomavirus (HPV) infection outcomes in women and assess the risk factors that may affect these outcomes.

Methods: A retrospective study was conducted on 608 women who tested positive for HPV-DNA during their initial visit to the outpatient department of Shenzhen Longgang Central Hospital from 2018 to 2023 and who had subsequent HPV-DNA testing as part of their post-visit monitoring. The monitoring intervals were every 6 months.

View Article and Find Full Text PDF

Pesticides induce oxidative DNA damage and genotoxic effects such as DNA single-strand breaks (SSBs), double-strand breaks (DSBs), DNA adducts, chromosomal aberrations, and enhanced sister chromatid exchanges. Such DNA damage can be repaired by DNA repair mechanisms. In humans, single nucleotide polymorphisms (SNPs) are present in DNA repair genes involved in base excision repair (BER) (, and nucleotide excision repair (NER) (, , , and ), and double-strand break repair (DSBR) ( and ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!