Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Zoledronic acid (ZOL) is clinically available for the treatment of skeletal complications. In preclinical studies, strong anti-cancer activities against breast cancer, prostate cancer, and leukemia were reported. It also inhibited the proliferation of cultured human endothelial cells, suggestive of an anti-angiogenic activity. Since ZOL has the tendency to accumulate in bone, we investigated the effect of ZOL on endothelial progenitor cells (EPCs), which originate from the bone marrow, and play important roles in angiogenesis.
Materials And Methods: Human peripheral blood mononuclear cells were cultured for 7 d to differentiate into EPCs. Cells were treated without/with ZOL or with geranylgeraniol (GGOH). Their endothelial phenotype was confirmed by the expression of CD144 and vascular endothelial growth factor receptor 2 and the tube-like formation ability on Matrigel (Becton Dickinson, Bedford, MA). Annexin V/propidium iodide staining was used to analyze apoptosis.
Results: ZOL treatment, even at low doses, from d 2 to 7 of culture resulted in impaired EPC differentiation and could be restored by co-treatment with GGOH. On the other hand, treatment of putative EPCs with ZOL at concentrations higher than 10 mum resulted in induction of apoptosis.
Conclusion: ZOL dose-dependently inhibited the differentiation of EPCs, the effect being observed even at low drug levels. At high concentrations, ZOL also induced the apoptotic death of putative EPCs. Since GGOH restored the inhibitory effect of ZOL on EPCs differentiation, the effect of ZOL appears to be dependent on the inhibition of prenylation of small-G-proteins. From these findings, we conclude that ZOL could be a potential anticancer agent by inhibiting angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2008.01.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!