Dependence of trans-ADP-ribosylation and nuclear glycolysis on the Arg 34-ATP complex of Zn2+ finger I of poly-ADP-ribose polymerase-1.

FEBS Lett

Helen Diller Family Comprehensive Cancer Center, Department of Anatomy, University of California-San Francisco, School of Medicine, San Francisco, CA 94143, United States.

Published: August 2008

The H-bonded complex of ATP with Arg 34 of Zn2+ finger I of poly-ADP-ribose polymerase-1 (PARP-1) determines trans-oligo-ADP-ribosylation from NAD+ to proteins other than PARP-1. This mechanism was tested in lysolecithin fractions of non-malignant and cancer cells separately and after their recombination. Cellular PARP-1 activity was recovered when the centrifugal sediment was recombined with the supernatant fraction containing cellular ADP-ribose oligomer acceptor proteins. Combination of the matrix fraction (Mx) of cancer cells (lacking OXPHOS) with its supernatant had the same PARP-1 activity as the Mx alone. The supernatant of non-malignant cells was replaced by glycolytic enzymes as ADP-ribose acceptor. The hexokinase activity of the supernatant increased when OXPHOS of intact cells was uncoupled by carbonyl cyanide 4-(trifluoro methoxy) phenylhydrazone. trans-ADP-ribosylation was demonstrated by polyacrylamide gel electrophoresis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2008.06.052DOI Listing

Publication Analysis

Top Keywords

zn2+ finger
8
finger poly-adp-ribose
8
poly-adp-ribose polymerase-1
8
cancer cells
8
parp-1 activity
8
activity supernatant
8
dependence trans-adp-ribosylation
4
trans-adp-ribosylation nuclear
4
nuclear glycolysis
4
glycolysis arg
4

Similar Publications

Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations.

Nat Prod Bioprospect

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).

View Article and Find Full Text PDF

The uneven electric field and slow Zn desolvation lead to rapid dendrite growth during Zn plating and stripping, which severely deteriorates the performance of Zn metal anodes (ZMAs) in Zn-ion batteries (ZIBs). Although polymer-based artificial protective (PBAP) layers are widely applied to homogenize the electric field of ZMAs, they often fail to promote the desolvation process that eventually induces Zn dendrite growth. Herein, a bi-functional protective layer, comprising a finger-like porous matrix of polysulfone (PSF) and a hydroxyl-rich filler of agarose (AG), is constructed to suppress Zn dendrite growth.

View Article and Find Full Text PDF

Although more than 140 genes have been associated with non-syndromic hereditary hearing loss (HL), at least half of the cases remain unexplained in medical genetic testing. One reason is that pathogenic variants are located in 'novel' deafness genes. A variant prioritization approach was used to identify novel (candidate) genes for HL.

View Article and Find Full Text PDF

Cooperative dynamics of PARP-1 zinc-finger domains in the detection of DNA single-strand breaks.

Sci Rep

October 2024

Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, Université de Lille, 59652, Villeneuve d'Ascq, France.

The DNA single-strand break (SSB) repair pathway is initiated by the multifunctional enzyme PARP-1, which recognizes the broken DNA ends by its two zinc-finger domains, Zn1 and Zn2. Despite a number of experiments performed with different DNA configurations and reduced fragments of PARP-1, many details of this interaction that is crucial to the correct initiation of the repair chain are still unclear. We performed Molecular Dynamics (MD) computer simulations of the interaction between the Zn1/Zn2 domains of PARP-1 and a DNA hairpin including a missing nucleotide to simulate the presence of an SSB, a construct used in recent experiments.

View Article and Find Full Text PDF

Orthopedic and dental implantations under bacterial infection microenvironment face significant challenges in achieving high-quality bone-implant integration. Designing implant coatings that incorporate both immune defense and anti-inflammation is difficult in conventional single-functional coatings. We introduce a multifunctional nanointerface using a zinc finger-inspired peptide-metal-phenolic nanocoating, designed to enhance implant osseointegration under such conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!