[Determination of hydrogen peroxide in rainwater by fluorometry].

Guang Pu Xue Yu Guang Pu Fen Xi

Alan G. MacDiarmid Research Institute for Renewable Energy, Three Gorges University, Yichang 443002, China.

Published: April 2008

The present paper introduces a new method using spectrofluorimetric analysis to determine the concentration of hydrogen peroxide in rainwater. In this method, an oxidation reaction is conducted between o-phenylenediamine (OPDA) and hydrogen peroxide in the buffer medium of NaAc-HAc at pH 4. 48 to form a new product 2,3-diaminophenazine (DAPN). Then the fluorescence intensity of DAPN is measured and 426 and 554 nm are chosen as the excitation and emission wavelengths. Therefore, with the foreknown concentration of input hydrogen peroxide, a series of fluorescence intensities of DAPN are acquired according to a series of different concentration of hydrogen peroxide as input, greatly improving the selectivity and sensibility of the system. A relationship between the input concentration of hydrogen peroxide and the fluorescence intensity of DAPN is then obtained using a linear regression. Results show that fluorescence intensity of DAPN is in proportion to the increase in the concentration of hydrogen peroxide in the range of 9.0 x 10(-7) -3.56 x 10(-5) mol x L(-1) almost linearly. The linear equation is F = 1.15c (micromol x L(-1))+398.6 (r = 0.999 1) and the detection limit is 2.7 x10(-7) mol x L(-1) (n = 11). The relative standard deviation of 11 parallel measurements with the concentration of H2O2 at 7.5 x 10(-6) and 3.0 x 10(-5) mol x L(-1), is 2.2 and 1.0%, respectively. Results from DPD method was used to verify this method. The interference of foreign iron was studied. Compared to the traditional methods, this binary system has a simplified operation and high sensitivity. The proposed method has been successfully applied to determine the concentration of hydrogen peroxide in rainwater.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hydrogen peroxide
32
concentration hydrogen
20
peroxide rainwater
12
fluorescence intensity
12
intensity dapn
12
mol l-1
12
peroxide
8
determine concentration
8
10-5 mol
8
concentration
7

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.

View Article and Find Full Text PDF

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.

Biol Trace Elem Res

January 2025

Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.

The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.

View Article and Find Full Text PDF

Fabricating an antioxidant and bacteriostatic soy protein isolate film double-crosslinked via dialdehyde cellulose nanofibers and Tara tannins for beef tallow and cooked pork preservation.

Int J Biol Macromol

January 2025

Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China. Electronic address:

Although Tara tannins (TT) have given soy protein isolate (SPI) film antioxidant properties, the mechanical and barrier properties were not significantly improved. In this work, dialdehyde cellulose nanofibers (DACNF) were obtained through oxidation using sodium periodate and incorporated into SPI film with TT to obtain antioxidant and bacteriostatic properties. With increased DACNF content, the anti-swelling, mechanical and barrier properties of SPI film were enhanced due to a double-crosslinked structure based on the covalent and hydrogen bonds formed between DACNF, TT and SPI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!