Closed-loop control of fed-batch cultures of recombinant Escherichia coli using on-line HPLC.

Biotechnol Bioeng

Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.

Published: September 1994

This article describes a fully automated system for the on-line monitoring and closed-loop control of a fed-batch fermentation of recombinant Escherichia coli, and presents two case studies of its used in limiting production of unwanted byproducts such as acetic in fed-batch fermentations. The system had two components. The first components, on-line monitoring, comprised an aseptic sampling device, a microcentrifuge, and HPLC System. These instruments removed a Sample from a fermentor, spun it at high speed to separate solid and liquid components, and then automatically injected the supernatant onto an HPLC column for analysis. The second component consisted of control algorithms programmed using the LabView visual programming environment in a control computer that was linked via a remote components were linked so that results from the on-line HPLC were captured and used by the control algorithm was designed to demonstrate coarse feedback control to confirm the operability of the controller. The second case study showed how the system could be used in a more sophisticated feedings strategy providing fine control and limiting acetate concentration to a low level throughout the fermentation. (c) 1994 John Wiley & Sons, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.260440707DOI Listing

Publication Analysis

Top Keywords

closed-loop control
8
control fed-batch
8
recombinant escherichia
8
escherichia coli
8
on-line hplc
8
on-line monitoring
8
control
6
fed-batch cultures
4
cultures recombinant
4
on-line
4

Similar Publications

Guidance and control of multiple unmanned surface vehicles (Multi-USVs) present many challenges due to their under-actuation and the unknown environmental disturbance. This research addresses the formation guidance and control problems of multi-USVs by designing a global fixed-time constrained guidance and control formation approach. First, a global fixed-time control Lyapunov function (GFCLF) is proposed using an innovative shift function to deal with the fixed-time output partial constraint.

View Article and Find Full Text PDF

Introduction Evoked compound action potentials (ECAPs) during spinal cord stimulation (SCS) may be useful in the treatment of chronic pain as a control signal for closed-loop neuromodulation. However, considerable inter-individual variability in evoked responses requires robust methods in order to realize effective, personalized pain management. These methods include artifact removal, feature extraction, classification, and prediction.

View Article and Find Full Text PDF

This article deals with the observer-based control problem of networked periodic piecewise systems under encoding-decoding frameworks. An encoder with a uniform quantizer, which can compress and encrypt data, is provided to process the measurements from the sensors. The processed data is transmitted over the network to the decoder to recover the original data and then to the remote control station, thereby reducing the communication burden and ensuring data security.

View Article and Find Full Text PDF

Volumetric, Microfluidic Plasmonic RT-PCR.

Small Methods

March 2025

Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.

Decentralized molecular detection of pathogens remains an important goal for public health. Although polymerase chain reaction (PCR) remains the gold-standard molecular detection method, thermocycling using Peltier heaters presents challenges in decentralized settings. Recent work has demonstrated plasmonic PCR, where nanomaterials on a surface or nanoparticles in solution heat upon stimulation by light, as a promising method for rapid thermocycling.

View Article and Find Full Text PDF

Yeast poly(A)-binding protein (Pab1) controls translation initiation in vivo primarily by blocking mRNA decapping and decay.

Nucleic Acids Res

February 2025

Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.

Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in WT but not in a mutant lacking the catalytic subunit of decapping enzyme (Dcp2), suggesting that enhanced decapping/degradation is a major driver of reduced translation at limiting Pab1. An increased median poly(A) tail length conferred by Pab1 depletion was likewise not observed in the dcp2Δ mutant, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!