Limits on exposures to extremely low-frequency electric fields, magnetic fields and contact currents, designated as voluntary guidelines or standards by several organizations worldwide, are specified so as to minimize the possibility of neural stimulation. The limits, which we refer to as guidelines, derive from "basic restrictions" either on electric fields or current density within tissue, or on avoidance of annoying or startling interactions that may be experienced with spark discharge or contact current. Further, the guidelines specify more conservative permissible doses and exposure levels for the general public than for exposures in controlled environments, which most typically involve occupational settings. In 2001 we published an update on guideline science. This paper covers more recent developments that are relevant to the formulation and implementation of the next generation of guidelines. The paper deals with neurostimulation thresholds and the relevance of magnetophosphenes to setting guideline levels; dosimetry associated with contact current benchmarked against basic restrictions; tissue and cellular dosimetry from spark discharge; assessment of exposures to high electric fields in realistic situations (e.g., line worker in a transmission tower); a simplified approach to magnetic field assessment in non-uniform magnetic fields; and a quantitative approach to sampling workplace exposure for assessing compliance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.20423 | DOI Listing |
Mater Horiz
January 2025
Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
The search for sustainable energy sources has accelerated the exploration of water decomposition as a clean H production method. Among the methods proposed, H production water electrolysis has garnered considerable attention. However, the process of H production from water electrolysis is severely limited by the slow kinetics of the anodic oxygen evolution reaction and large intrinsic overpotentials at the anode; therefore, suitable catalysts need to be found to accelerate the reaction rate.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.
View Article and Find Full Text PDFPurpose: To theoretically and experimentally study implant lead tip heating caused by radiofrequency (RF) power deposition in different wire configurations that contain loop(s).
Methods: Maximum temperature rise caused by RF heating was measured at 1.5T on 20 insulated, capped wires with various loop and straight segment configurations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!