Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The early detection of outbreaks of diseases is one of the most challenging objectives of epidemiological surveillance systems. In this paper, a Markov switching model is introduced to determine the epidemic and non-epidemic periods from influenza surveillance data: the process of differenced incidence rates is modelled either with a first-order autoregressive process or with a Gaussian white-noise process depending on whether the system is in an epidemic or in a non-epidemic phase. The transition between phases of the disease is modelled as a Markovian process. Bayesian inference is carried out on the former model to detect influenza epidemics at the very moment of their onset. Moreover, the proposal provides the probability of being in an epidemic state at any given moment. In order to validate the methodology, a comparison of its performance with other alternatives has been made using influenza illness data obtained from the Sanitary Sentinel Network of the Comunitat Valenciana, one of the 17 autonomous regions in Spain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.3320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!