A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian Markov switching models for the early detection of influenza epidemics. | LitMetric

Bayesian Markov switching models for the early detection of influenza epidemics.

Stat Med

Area de Epidemiología, Conselleria de Sanitat, Generalitat Valenciana, C/Micer Mascó 31, 46010 Valencia, Spain.

Published: September 2008

The early detection of outbreaks of diseases is one of the most challenging objectives of epidemiological surveillance systems. In this paper, a Markov switching model is introduced to determine the epidemic and non-epidemic periods from influenza surveillance data: the process of differenced incidence rates is modelled either with a first-order autoregressive process or with a Gaussian white-noise process depending on whether the system is in an epidemic or in a non-epidemic phase. The transition between phases of the disease is modelled as a Markovian process. Bayesian inference is carried out on the former model to detect influenza epidemics at the very moment of their onset. Moreover, the proposal provides the probability of being in an epidemic state at any given moment. In order to validate the methodology, a comparison of its performance with other alternatives has been made using influenza illness data obtained from the Sanitary Sentinel Network of the Comunitat Valenciana, one of the 17 autonomous regions in Spain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.3320DOI Listing

Publication Analysis

Top Keywords

markov switching
8
early detection
8
influenza epidemics
8
epidemic non-epidemic
8
bayesian markov
4
switching models
4
models early
4
influenza
4
detection influenza
4
epidemics early
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!