Effective proximity retrieval by ordering permutations.

IEEE Trans Pattern Anal Mach Intell

Facultad de Ciencias Fisico Matematicas, Universidad Michoacana, Ciudad Universitaria, Michoacan, Mexico.

Published: September 2008

We introduce a new probabilistic proximity search algorithm for range and K-nearest neighbor (K-NN) searching in both coordinate and metric spaces. Although there exist solutions for these problems, they boil down to a linear scan when the space is intrinsically high-dimensional, as is the case in many pattern recognition tasks. This, for example, renders the K-NN approach to classification rather slow in large databases. Our novel idea is to predict closeness between elements according to how they order their distances towards a distinguished set of anchor objects. Each element in the space sorts the anchor objects from closest to farthest to it, and the similarity between orders turns out to be an excellent predictor of the closeness between the corresponding elements. We present extensive experiments comparing our method against state-of-the-art exact and approximate techniques, both in synthetic and real, metric and non-metric databases, measuring both CPU time and distance computations. The experiments demonstrate that our technique almost always improves upon the performance of alternative techniques, in some cases by a wide margin.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2007.70815DOI Listing

Publication Analysis

Top Keywords

anchor objects
8
effective proximity
4
proximity retrieval
4
retrieval ordering
4
ordering permutations
4
permutations introduce
4
introduce probabilistic
4
probabilistic proximity
4
proximity search
4
search algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!