Isorhamnetin is a flavanoid present in plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. Since the plasma level of isorhamnetin is maintained longer than quercetin, isorhamnetin may be a key metabolite to mediate the anti-tumor effect of quercetin. In the present study, we investigated the apoptotic mechanism of isorhamnetin in Lewis lung cancer (LLC) cells in vitro and established its in vivo anti-cancer efficacy. In cell culture, isorhamnetin significantly increased DNA fragmentation, and TUNEL positive apoptotic bodies and sub-G(1) apoptotic population in time- and dose-dependent manners. Western blot analyses revealed increased cleavage of caspase-3, and caspase-9 and PARP and increased cytosolic cytochrome C in isorhamnetin-treated cells. These events were accompanied by a reduced mitochondrial potential. Apoptosis was blocked by a general caspase inhibitor or the specific inhibitor of caspase-3 or -9. These in vitro results support mitochondria-dependent caspase activation to mediate isorhamnetin-induced apoptosis. Furthermore, an animal study revealed for the first time that isorhamnetin given by i.p. injection at a dose that is at least one order of magnitude lower than quercetin significantly suppressed the weights of tumors excised from LLC bearing mice. The in vivo anti-tumor efficacy was accompanied by increased TUNEL-positive and cleaved-caspase-3-positive tumor cells. Our data therefore support isorhamnetin as an active anti-cancer metabolite of quercetin in part through caspase-mediated apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2008.05.040 | DOI Listing |
Cancers (Basel)
October 2019
Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
Isorhamnetin is an O-methylated flavonol that is predominantly found in the fruits and leaves of various plants, which have been used for traditional herbal remedies. Although several previous studies have reported that this flavonol has diverse health-promoting effects, evidence is still lacking for the underlying molecular mechanism of its anti-cancer efficacy. In this study, we examined the anti-proliferative effect of isorhamnetin on human bladder cancer cells and found that isorhamnetin triggered the gap 2/ mitosis (G2/M) phase cell arrest and apoptosis.
View Article and Find Full Text PDFGen Physiol Biophys
November 2019
Department of Biochemistry, Dongeui University College of Korean Medicine, Busanjin, Busan, Republic of Korea.
Isorhamnetin is a 3'-O-methylated metabolite of quercetin that is found predominantly in a variety of medicinal plants. Although many previous studies have reported that this flavonol has diverse health-promoting effects, evidence for the underlying molecular mechanism of anti-cancer efficacy is still lacking. In this study, it was examined the anti-proliferative effect of isorhamnetin on human hepatocarcinoma Hep3B cells, and found that isorhamnetin induced cell cycle arrest at G2/M phase and apoptosis.
View Article and Find Full Text PDFGene
August 2018
Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China.
To unveil the possible protective role of isorhamnetin, an immediate 3'-O-methylated metabolite of quercetin, in cardiomyocyte under hypoxia/reoxygenation (H/R) condition and the underlying mechanisms involved, H9c2 cardiomyocytes were exposed to the vehicle or H/R for 6 h (2 h of hypoxia following by 4 h of reoxygenation) with isorhamnetin (0, 3, 6, 12, 25, 50 μM for 4 h prior to H/R exposure). Apoptosis was evaluated by TUNEL staining, flow cytometry analysis and western blot assay for cleaved caspase-3. Myocardial injure in vivo was determined by infarct size using TTC staining, histological damage using H&E staining and myocardial apoptosis.
View Article and Find Full Text PDFGen Physiol Biophys
April 2016
Department of Biochemistry, Dongeui University College of Korean Medicine, 52-57, Yangjeong-ro, Busanjin, Busan 614-052, Republic of Korea.
This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1).
View Article and Find Full Text PDFMol Med Rep
October 2015
The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Shenzhen Graduate School of Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.
Isorhamnetin (ISO) is a flavonoid from plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. To date, the anti‑tumor effects of ISO and the underlying mechanisms have not been elucidated in lung cancer cells. The present study investigated the inhibitory effects of ISO on the growth of human lung cancer A549 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!