Objective: Effective treatments for major depressive disorder exist, yet some patients fail to respond, or achieve only partial response. One approach to optimizing treatment success is to identify which patients are more likely to respond best to which treatments. The objective of this investigation was to determine if patient personality characteristics are predictive of response to either cognitive-behavioural therapy (CBT) or pharmacotherapy (PHT).
Method: Depressed patients completed the Revised NEO Personality Inventory, which measures the higher-order domain and lower-order facet traits of the Five-Factor Model of Personality, and were randomized to receive either CBT or PHT.
Result: Four personality traits--the higher-order domain neuroticism and 3 lower-order facet traits: trust, straightforwardness, and tendermindedness--were able to distinguish a differential response rate to CBT, compared with PHT.
Conclusion: The assessment of patient dimensional personality traits can assist in the selection and optimization of treatment response for depressed patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2543930 | PMC |
http://dx.doi.org/10.1177/070674370805300605 | DOI Listing |
Curr Med Chem
January 2025
Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India.
Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.
View Article and Find Full Text PDFACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.
View Article and Find Full Text PDFInt J Dermatol
January 2025
Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
Few studies discuss the co-management of vitiligo and acquired hyperpigmentation disorders (AHD) such as melasma, erythema dyschromicum perstans, post-inflammatory hyperpigmentation, drug-induced hyperpigmentation, and lichen planus pigmentosus. This review discusses clinical studies examining co-management strategies and identifies current practice gaps. Dermatology Life Quality Index scores are higher in individuals with vitiligo or melasma.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!