3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a key regulator of cell proliferation and survival signal transduction. PDK1 is known to be constitutively active and is further activated by Src-mediated phosphorylation at the tyrosine-9, -373, and -376 residues. To identify novel regulators of PDK1, we performed E. coli-based two-hybrid screening and revealed that tumor suppressor candidate 4 (TUSC4), also known as nitrogen permease regulator-like 2 (NPRL2), formed a complex with PDK1 and suppressed Src-dependent tyrosine phosphorylation and activation of PDK1 in vitro and in cells. The NH(2)-terminal 133 amino acid residues of TUSC4 were involved in binding to PDK1. The deletion mutant of TUSC4 that lacked the NH(2)-terminal domain showed no inhibitory effects on PDK1 tyrosine phosphorylation or activation. Thus, complex formation is indispensable for TUSC4-mediated PDK1 inactivation. The siRNA-mediated down-regulation of TUSC4 induced cell proliferation, while ectopic TUSC4 expression inactivated the PDK1 downstream signaling pathway, including Akt and p70 ribosomal protein S6 kinase, and increased cancer cell sensitivity to several anticancer drugs. Our results suggest that TUSC4/NPRL2, a novel PDK1-interacting protein, plays a role in regulating the Src/PDK1 signaling pathway and cell sensitivity to multiple cancer chemotherapeutic drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159638 | PMC |
http://dx.doi.org/10.1111/j.1349-7006.2008.00874.x | DOI Listing |
Cell Rep
January 2025
MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China. Electronic address:
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response.
View Article and Find Full Text PDFSci Rep
January 2025
Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFImmunohorizons
January 2025
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.
Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!