Novel cage-like and electromagnetic functional polyaniline (PANI)/CoFe2O4 composite nanostructures, in which the self-assembled PANI nanofibers (approximately 15 nm in diameter) entwined around the octahedral CoFe2O4 magnet acting as the nucleation site or template, were successfully prepared by FeCl3 as either oxidant and dopant via a self-assembly process. The coordination effect of the magnet as a nucleation site or template and the magnetic interaction between the PANI nanofibers and CoFe2O4 as a driving force results in such cage-like nanostructures. The cage-like composite nanostructures not only have high conductivity (sigmamax approximately 5.2 S/cm), but also show a typical ferromagnetic behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp8016997 | DOI Listing |
Nanomicro Lett
January 2025
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India.
Electronic waste (e-waste) has become a significant environmental concern worldwide due to the rapid advancement of technology and short product lifecycles. Waste-printed electronic boards (WPCBs) contain valuable metals and semiconductors; among them, tin can be recycled and repurposed for sustainable material production. This study presents a potential ecofriendly methodology for the recovery of tin from WPCBs in the form of tin oxide nanostructured powders.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
Highly efficient and durable electrocatalysts play a crucial role in promoting the hydrogen evolution reaction (HER). Among them, medium-entropy oxides (MEOs)-based electrocatalysts have attracted extensive attention due to the advantages of multiple principal components, lattice distortion, and a hysteresis diffusion effect. However, it is still challenging to design MEOs with rational structures and composition.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.
A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!