Good levels of substrate-controlled, 1,5- syn-stereoinduction are obtained in boron-mediated aldol reactions of beta-trichloromethyl-beta-alkoxy and beta-trifluoromethyl-beta-alkoxy methylketones with achiral aldehydes, independent of the nature of the beta-alkoxy protecting group (TBS or PMB). In the case of boron aldol reactions of beta-aryl-beta-alkoxy methylketones, the 1,5- anti-adducts were obtained with high levels of diastereoselectivity only with a beta-OPMB group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo8009165 | DOI Listing |
J Org Chem
January 2025
School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
Aldolases, especially 2-deoxyribose-5-phosphate aldolase (DERA) enzymes, have been widely employed to access key chiral precursors for various active pharmaceutical ingredients (APIs). This has been enabled by expanding their substrate scope toward non-natural acceptors and donors via protein engineering. In this study, we endeavored to broaden the acceptor substrate scope of DERA from sp.
View Article and Find Full Text PDFChemSusChem
January 2025
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales, Instituto de Química, Calle 70 No 52-21, Medellín, NA, Medellín, COLOMBIA.
In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Hydrazides are known to catalyze reactions of α,β-unsaturated aldehydes via transient iminium formation. The iminium intermediate displays enhanced electrophilicity, which facilitates conjugate additions and cycloadditions. We observed that a hydrazide embedded in a seven-membered ring catalyzes homoaldol condensation of a simple aldehyde in a process that displays an approximate second-order dependence on the hydrazide.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Biophysics Institute, CNR-IBF, Via Corti 12, I-20133, Milano, Italy; Department of Bioscience, University of Milan, Via Celoria 26, I-20133, Milano, Italy. Electronic address:
Aldolases are crucial enzymes that catalyze the formation of carbon-carbon bonds in the context of the anabolic and catabolic pathways of various metabolites. The bacterium Pseudomonas fluorescens N3 can use naphthalene as its sole carbon and energy source by using, among other enzymes, the trans-o-hydroxybenzylidenepyruvate (tHBP) hydratase-aldolase (HA), encoded by the nahE gene. In this study, we present the crystallographic structures of tHBP-HA in three different functional states: the apo enzyme with a phosphate ion in the active site, and the Schiff base adduct bound either to pyruvate or to the substitute with '(R)-4-hydroxy-4-(2-hydroxyphenyl)-2-oxobutanoate'(intermediate state).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China.
A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!