Malathion is an insecticide widely used in agriculture and in public health programs that when used indiscriminately in large amounts can cause environmental pollution and risk to human health. However, it is possible that during the metabolism of malathion, reactive oxygen species can be generated, and malathion may produce oxidative stress in intoxicated rats that can be responsible for alterations in DNA molecules related in some studies. As a result, the present study aimed to investigate the DNA damage of cerebral tissue and peripheral blood in rats after acute and chronic malathion exposure. We used single cell gel electrophoresis (Comet assay) to measure early damage in hippocampus and peripheral blood and the Micronucleus test in total erythrocytes samples. Malathion was administered intraperitoneally once a day for one day (acute) or for 28 days (chronic) protocols (in both protocols, malathion was administered at 25, 50, 100, and 150 mg/kg). Our results showed that malathion (100 and 150 mg/kg) increased the DNA damage index in the peripheral blood and in the hippocampus after both chronic and acute treatment. Malathion increased the frequency of micronuclei only in chronic treatment at 150 mg/kg dose, and induced a cytotoxic dose-dependent decrease in the frequency of polychromatic erythrocytes in the peripheral blood of rats. In conclusion, since malathion increased both the peripheral blood and hippocampus DNA damage index using the Comet assay and increased the frequency of micronuclei in the total peripheral blood, it can be regarded as a potential mutagen/carcinogenic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf800910q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!