AI Article Synopsis

Article Abstract

Extracellular nucleotides play important trophic roles in development and central nervous system (CNS) injury, but the functions of distinct purinergic receptors and related signaling pathways have not been fully elucidated. In the present study we identified opposing effects of P2X and P2Y receptors on the ability of FGF2 to induce proliferation in primary cultures of rat cortical astrocytes. Low concentrations of ATP enhanced DNA synthesis induced by FGF2, whereas high concentrations inhibited FGF2-induced proliferation. Comparison of concentration-response experiments with ATP and 2',3'-O-(4-benzoyl)-benzoyl-ATP (BzATP) indicated that the inhibitory effect was mediated by P2X(7) receptors. Interestingly, activation of P2X(7) receptors led to a state of reversible growth arrest rather than cell death. Selectivity studies showed that proliferation evoked by epidermal growth factor and platelet-derived growth factor was also inhibited by P2X(7) receptors, but P2X(1) or P2X(3) receptors did not inhibit proliferation induced by FGF2. A marker of mitosis, phosphohistone-3, was reduced by BzATP and increased by UTP, suggesting that the enhancing effect of ATP on FGF2-induced proliferation was mediated by P2 purine/pyrimidine receptors. Phosphorylation of the growth arrest-related protein kinases p38/MAPK and SAPK/JNK was strongly increased by BzATP but only weakly affected by UTP. We conclude that P2Y purine/pyrimidine receptors enhance proliferation induced by FGF2 in astrocytes, whereas stimulation of P2X(7) receptors inhibits proliferation by shifting cells to a state of reversible growth arrest that may be mediated by protein kinase signaling. These trophic actions of P2X(7) and P2Y purine/pyrimidine receptors may contribute to the regulation of CNS development, adult neurogenesis, and the response of astrocytes to injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127043PMC
http://dx.doi.org/10.1002/jnr.21765DOI Listing

Publication Analysis

Top Keywords

p2x7 receptors
16
induced fgf2
12
purine/pyrimidine receptors
12
receptors
11
opposing effects
8
p2x7 p2y
8
proliferation
8
cns development
8
fgf2-induced proliferation
8
state reversible
8

Similar Publications

Inhibition of P2X7 receptor mitigates atrial fibrillation susceptibility in isoproterenol-induced rats.

Biochem Biophys Res Commun

January 2025

Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China. Electronic address:

Background: Atrial fibrillation (AF) is a common cardiac arrhythmia that is characterized by atrial electrical remodeling. The P2X7 receptor (P2X7R), an ATP-gated ion channel, has been implicated in cardiovascular pathologies; however, its role in atrial electrical remodeling remains unclear. This study investigated whether inhibition of P2X7R could mitigate isoproterenol (ISO)-induced atrial electrical remodeling in rats and explored the underlying mechanisms.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Priming and release of cytokine IL-1β in microglial cells from the retina.

Exp Eye Res

January 2025

Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:

The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.

View Article and Find Full Text PDF

Repeated administration of a subanesthetic dose of ketamine results in impaired motor and cognitive behavior and differential expression of hippocampal P2X1 and P2X7 receptors in adult mice.

Behav Brain Res

January 2025

Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:

Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!