Astrocytes have an important role in synaptic formation and function but how astrocytic processes become associated with synaptic structures during development is not well understood. Here we analyzed the pattern of growth of the processes extending off the main Bergmann glial (BG) shafts during synaptogenesis in the cerebellum. We found that during this period, BG process outgrowth was correlated with increased ensheathment of dendritic spines. In addition, two-photon time-lapse imaging revealed that BG processes were highly dynamic, and processes became more stable as the period of spine ensheathment progressed. While process motility was dependent on actin polymerization, activity of cytoskeletal regulators Rac1 and RhoG did not play a role in glial process dynamics or density, but was critical for maintaining process length. We extended this finding to probe the relationship between process morphology and ensheathment, finding that shortened processes result in decreased coverage of the spine. Furthermore, we found that areas in which BG expressed dn-Rac1, and therefore had a lower level of synaptic ensheathment, showed an overall increase in synapse number. These analyses reveal how BG processes grow to surround synaptic structures, elucidate the importance of BG process structure for proper development of synaptic ensheathment, and reveal a role for ensheathment in synapse formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637407PMC
http://dx.doi.org/10.1002/glia.20712DOI Listing

Publication Analysis

Top Keywords

bergmann glial
8
spine ensheathment
8
synaptic structures
8
synaptic ensheathment
8
processes
7
ensheathment
7
process
6
synaptic
5
morphogenesis regulation
4
regulation bergmann
4

Similar Publications

Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring.

IBRO Neurosci Rep

June 2025

Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.

Background: Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function.

View Article and Find Full Text PDF

Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing.

View Article and Find Full Text PDF

Induction of Heat Shock Proteins 27, 60, 70, and 90 in the Cerebellum of Rats After Hyperthermia During Postnatal Development.

Microsc Microanal

November 2024

Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey.

Heat shock proteins (HSPs) are induced in response to stressful stimuli and play an important role in cell repair and protection. This study, using immunohistochemistry, aimed to determine whether HSPs are induced in the cerebellum of rats subjected to hyperthermia during postnatal development (PND). The results showed that unlike HSP27 and HSP70, HSP60 and HSP90 were constitutively expressed in the cerebellum of rats.

View Article and Find Full Text PDF

Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional knockout (KO and cKO, respectively) mouse lines.

View Article and Find Full Text PDF

A human fetal cerebellar map of the late second trimester reveals developmental molecular characteristics and abnormality in trisomy 21.

Cell Rep

August 2024

Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China. Electronic address:

Article Synopsis
  • Researchers explored the development of the human fetal cerebellum during the late second trimester, focusing on key cell types like astrocytes and oligodendrocytes using single-cell RNA sequencing (scRNA-seq).
  • They identified specific populations of progenitor cells and their distribution in the cerebellum, highlighting the structural organization of these cells in relation to the white matter.
  • The study also examined the cerebellum in trisomy 21 (Down syndrome) fetuses, finding abnormal gene expressions that could affect neuronal development, thus shedding light on both normal and atypical cerebellar growth.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!