Tissue response and orbital floor regeneration using cyclic acetal hydrogels.

J Biomed Mater Res A

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA.

Published: September 2009

Orbital floor injuries are a common form of traumatic craniofacial injury that may not heal properly through the body's endogenous response. Reconstruction is often necessary, and an optimal method does not exist. We propose a tissue engineering approach for orbital bone repair based upon a cyclic acetal biomaterial formed from 5-ethyl-5-(hydroxymethyl)-beta,beta-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD) and poly(ethylene glycol) diacrylate (PEGDA). The EHD monomer and PEGDA polymer may be fabricated into an EH-PEG hydrogel by radical polymerization. The objectives of this work were to study (1) the tissue response to EH-PEG hydrogels in an orbital bone defect and (2) the induction of bone formation by delivery of bone morphogenetic protein-2 (BMP-2) from EH-PEG hydrogels. EH-PEG hydrogels were fabricated and implanted into an 8-mm rabbit orbital floor defect. Experimental groups included unloaded EH-PEG hydrogels, and EH-PEG hydrogels containing 0.25 microg and 2.5 microg BMP-2/implant. Results demonstrated that the unloaded hydrogel was initially bordered by a fibrin clot and then by fibrous encapsulation. BMP-2 loaded EH-PEG hydrogels, independent of concentration, were surrounded by fibroblasts at both time points. Histological analysis also demonstrated that significant bone growth was present at the 2.5 microg BMP-2/implant group at 28 days. This work demonstrates that the EH-PEG construct is a viable option for use and delivery of BMP-2 in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32131DOI Listing

Publication Analysis

Top Keywords

eh-peg hydrogels
24
orbital floor
12
tissue response
8
cyclic acetal
8
hydrogels orbital
8
orbital bone
8
eh-peg
8
hydrogels eh-peg
8
microg bmp-2/implant
8
hydrogels
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!