A series of seven fast-biodegrading aliphatic polyesters were prepared from 1,3-propanediol and aliphatic diacids with increasing number of methylene units (x). Melting points decreased from PPSu to PPAd and then increased again to PPAz and PPSeb. Crystallization rates and thermal stability increased steadily with increasing x. Glass transition temperatures decreased steadily to PPPim and subsequently increased. Enzymatic degradation of the polymers in the presence of a mixture of Rhizopus delemar and Pseudomonas cepacia lipases was much faster than that of poly(epsilon-caprolactone). All the polyester specimens were almost disintegrated within 36 h. PPSub exhibited the fastest enzymatic hydrolysis rates, PPAd and PPSuc the slowest.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.200800035DOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
8
correlation chemical
4
chemical solid-state
4
solid-state structures
4
structures enzymatic
4
hydrolysis novel
4
novel biodegradable
4
biodegradable polyesters
4
polyesters case
4
case polypropylene
4

Similar Publications

This study identified the amino acid sequences of peptides generated from the enzymatic hydrolysis of goat milk proteins from two different sources and annotated their functional activities. Peptidomics and molecular docking approaches were used to investigate the antioxidant and ACE inhibitory properties of the unique peptides, revealing the molecular mechanisms underlying their bioactivity. In vitro experiments showed that the IC50 values for ACE inhibition of the four peptides (LSMTDTR, QEALELIR, NIPVGILR, and QAQNVQHY) were 2.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Unlabelled: While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits.

Background/objectives: Broccoli ( L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!