Benzene may be present as a trace impurity or residual component of mixed petroleum products due to refining processes. In this article, the authors review the historical benzene content of various petroleum-derived products and characterize the airborne concentrations of benzene associated with the typical handling or use of these products in the United States, based on indoor exposure modeling and industrial hygiene air monitoring data collected since the late 1970s. Analysis showed that products that normally contained less than 0.1% v/v benzene, such as paints and paint solvents, printing solvents and inks, cutting and honing oils, adhesives, mineral spirits and degreasers, and jet fuel typically have yielded time-weighted average (TWA) airborne concentrations of benzene in the breathing zone and surrounding air ranging on average from <0.01 to 0.3 ppm. Except for a limited number of studies where the benzene content of the product was not confirmed to be <0.1% v/v, airborne benzene concentrations were also less than current occupational exposure limits (e.g., threshold limit value of 0.5 ppm and permissible exposure limit of 1.0 ppm) based on exceedance fraction calculations. Exposure modeling using Monte Carlo techniques also predicted 8-hr TWA near field airborne benzene concentrations ranging from 0.002 to 0.4 ppm under three hypothetical solvent use scenarios involving mineral spirits. The overall weight-of-evidence indicates that the vast majority of products manufactured in the United States after about 1978 contained <0.1% v/v benzene, and 8-hr TWA airborne concentrations of benzene in the workplace during the use of these products would not have been expected to exceed 0.5 ppm under most product use scenarios. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a document containing exposure modeling scenarios and results, historical benzene content of petroleum-derived products, and air monitoring results.].

Download full-text PDF

Source
http://dx.doi.org/10.1080/15459620802282110DOI Listing

Publication Analysis

Top Keywords

petroleum-derived products
8
airborne concentrations
8
concentrations benzene
8
benzene
6
products
5
occupational exposures
4
exposures associated
4
associated petroleum-derived
4
products trace
4
trace levels
4

Similar Publications

Recent advances in engineering non-native microorganisms for poly(3-hydroxybutyrate) production.

World J Microbiol Biotechnol

January 2025

Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.

View Article and Find Full Text PDF

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

The burgeoning field of materials science is currently witnessing a paradigm shift toward the utilization of renewable plant biomass as a viable chemical source for the production of sustainable materials. This trend is substantiated by a significant corpus of recent experimental and theoretical research focused on the synthesis and property analysis of such polymers. Within this context, polybenzoxazines stand out as a pioneering class of thermosetting polymers, distinguished by their exceptional thermal and mechanical characteristics, coupled with the feasibility of synthesizing their precursor monomers from eco-friendly, renewable resources, including plant phenols and furfurylamine.

View Article and Find Full Text PDF

The sustainable treatment of petroleum-derived produced water (PW), a significant byproduct of oil and gas extraction, presents a persistent problem due to the presence of organic pollutants. This study examines the potential of the microalga Chlorella sorokiniana (C. sorokiniana) for the bioremediation of dissolved organic pollutants in PW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!