AI Article Synopsis

  • Understanding superconductivity involves identifying the main carriers responsible for pairing, particularly in high-T(c) copper oxide superconductors.
  • Recent experiments show a Fermi surface and multiple carrier pockets in YBa(2)Cu(3)O(6.51), revealing a significant larger pocket of heavier mass carriers dominating thermodynamic properties.
  • The detection of multiple pockets helps define constraints on any magnetic order, suggesting a potential density-wave model with spiral structures that aligns with experimental data.

Article Abstract

To understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high-transition-temperature (high-T(c)) copper oxide superconductors have revealed the existence of a Fermi surface akin to that in normal metals, comprising fermionic carriers that undergo orbital quantization. The unexpectedly small size of the observed carrier pocket, however, leaves open a variety of possibilities for the existence or form of any underlying magnetic order, and its relation to d-wave superconductivity. Here we report experiments on quantum oscillations in the magnetization (the de Haas-van Alphen effect) in superconducting YBa(2)Cu(3)O(6.51) that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole-doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density-wave model with spiral or related modulated magnetic order, consistent with experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature07095DOI Listing

Publication Analysis

Top Keywords

fermi surface
12
carrier pocket
8
magnetic order
8
multi-component fermi
4
surface vortex
4
vortex state
4
state underdoped
4
underdoped high-tc
4
high-tc superconductor
4
superconductor understand
4

Similar Publications

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Low-Level Fe Doping in CoMoO Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting.

Inorg Chem

January 2025

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

A strong n-type perovskite layer is crucial in achieving high open-circuit voltage (V) and power conversion efficiency (PCE) in the p-i-n solar cells, as the weak n-type perovskites result in a loss of V, and the p-type perovskites contain numerous electron traps that cause the severe carrier recombination. Here, three types of perylene diimide (PDI) based small molecule dopants with different dimensions, including 1D-PDI, 2D-PDI, and 3D-PDI are designed, to produce heavier n-type perovskites. The PDI-based molecules with Selenium atoms have a strong electron-donating ability, effectively enlarging the quasi-Fermi level splitting within the perovskites.

View Article and Find Full Text PDF

The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!