Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension.

Am J Physiol Renal Physiol

Heart and Kidney Institute, College of Pharmacy, University of Houston, 4800 Calhoun, Houston, TX 77204, USA.

Published: September 2008

Reactive oxygen species have emerged as important molecules in cardiovascular dysfunction such as diabetes and hypertension. Recent work has shown that oxidative stress and angiotensin II signaling mutually regulate each other by multiple mechanisms and contribute to the development of hypertension. Most of the known biological actions of angiotensin II can be attributed to AT1 receptors. The present study was carried out to investigate the role of renal AT1 receptor signaling in oxidative stress-mediated hypertension. Male Sprague-Dawley rats received tap water (control) or 30 mM L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mM tempol (an antioxidant) for 2 wk. Compared with control rats, BSO-treated rats exhibited increased oxidative stress and reduced antioxidant levels and developed hypertension. BSO treatment also caused increased renal proximal tubular AT1 receptor protein abundance, message levels, and ligand binding. In these rats, angiotensin II caused significantly higher accumulation of inositol trisphosphate (IP3) and phospholipase C (PLC) activation which was sensitive to blockade by AT1 but not to AT2 antagonist. Also, angiotensin II-mediated, AT1-dependent MAP kinase, Na-K-ATPase, and Na/H exchanger 3 activation was higher in BSO-treated rats than in control rats. Tempol supplementation of BSO-treated rats restored redox status, normalized AT1 receptor expression, and decreased blood pressure. Tempol also normalized the angiotensin II-mediated, AT1-dependent IP3 accumulation and PLC, MAP kinase, Na-K-ATPase, and Na/H exchanger 3 stimulation. These data suggest that oxidative stress leads to AT1 receptor upregulation, which in turn causes overstimulation of sodium transporters and subsequently contributes to sodium retention and hypertension. Tempol, while reducing oxidative stress, normalizes AT1 receptor signaling and decreases blood pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536884PMC
http://dx.doi.org/10.1152/ajprenal.90308.2008DOI Listing

Publication Analysis

Top Keywords

at1 receptor
24
oxidative stress
16
bso-treated rats
12
at1
8
receptor upregulation
8
sodium transporters
8
receptor signaling
8
control rats
8
angiotensin ii-mediated
8
ii-mediated at1-dependent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!