Deletion of the distal region of chromosome 1 frequently occurs in a variety of human cancers, including aggressive neuroblastoma. Previously, we have identified a 500-kb homozygously deleted region at chromosome 1p36.2 harboring at least six genes in a neuroblastoma-derived cell line NB1/C201. Among them, only KIF1Bbeta, a member of the kinesin superfamily proteins, induced apoptotic cell death. These results prompted us to address whether KIF1Bbeta could be a tumor suppressor gene mapped to chromosome 1p36 in neuroblastoma. Hemizygous deletion of KIF1Bbeta in primary neuroblastomas was significantly correlated with advanced stages (p = 0.0013) and MYCN amplification (p < 0.001), whereas the mutation rate of the KIF1Bbeta gene was infrequent. Although KIF1Bbeta allelic loss was significantly associated with a decrease in KIF1Bbeta mRNA levels, its promoter region was not hypermethylated. Additionally, expression of KIF1Bbeta was markedly down-regulated in advanced stages of tumors (p < 0.001). Enforced expression of KIF1Bbeta resulted in an induction of apoptotic cell death in association with an increase in the number of cells entered into the G2/M phase of the cell cycle, whereas its knockdown by either short interfering RNA or by a genetic suppressor element led to an accelerated cell proliferation or enhanced tumor formation in nude mice, respectively. Furthermore, we demonstrated that the rod region unique to KIF1Bbeta is critical for the induction of apoptotic cell death in a p53-independent manner. Thus, KIF1Bbeta may act as a haploinsufficient tumor suppressor, and its allelic loss may be involved in the pathogenesis of neuroblastoma and other cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259808PMC
http://dx.doi.org/10.1074/jbc.M802316200DOI Listing

Publication Analysis

Top Keywords

apoptotic cell
16
cell death
16
tumor suppressor
12
kif1bbeta
11
haploinsufficient tumor
8
suppressor gene
8
gene mapped
8
mapped chromosome
8
chromosome 1p362
8
region chromosome
8

Similar Publications

The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.

View Article and Find Full Text PDF

Colorectal cancer is the second most common cause of cancer-related deaths worldwide and the third most common cancer overall. In this study, we investigate the anti-colon cancer potential of phytochemically, and thermally synthesised novel green carbon dots based on Rhododendron luteum (RL-CDs). A new synthesis method was used to produce carbon dots obtained from the Rhododendron luteum (RL) plant in an environmentally friendly manner.

View Article and Find Full Text PDF

Agmatine suppresses glycolysis via the PI3K/Akt/mTOR/HIF-1α signaling pathway and improves mitochondrial function in microglia exposed to lipopolysaccharide.

Biofactors

January 2025

Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a severe pulmonary vascular disease characterized by poor clinical outcomes and limited therapeutic options. Celastrol (CEL), a natural product derived from Tripterygium wilfordii Hook F, has shown therapeutic potential in PH models, although its mechanisms are not fully understood. This study aims to investigate the role of CEL in PH and explore its potential underlying mechanisms.

View Article and Find Full Text PDF

Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies.

J Cell Biochem

January 2025

Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India.

Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!