Objective: To evaluate the application value of MRI fast SPGR single slice scan in patients with obstructive sleep apnea-hypopnea syndrome when comparing the images between fast SPGR single slice scan and continuous dynamic scan.
Methods: Eighteen patients with obstructive sleep apnea-hypopnea syndrome were examined by fast SPGR single slice scan and continuous dynamic scan in turn. Fast SPGR single slice scans were conducted when the phases of apnea, inspiration and expiration appeared on the respiratory wave of the subjects. Fast SPGR continuous dynamic scans were conducted when the patients were awake and apneic. The scan planes were median sagittal plane and axial planes (the slice of middle part of palate, the slice of inferior part of palate, the slice of middle part of lingual root and the slice of 0.5cm beneath the free margin of epiglottis). The obstructed sites and the cross-sectional areas of upper airway were compared between the two scan methods.
Results: Seven cases showed complete obstruction at the narrowest sites of upper airway when apnea appeared; eleven cases showed marked decrease in cross-sectional areas at the narrowest sites compared with the areas when the patients were awake; two cases manifested multiple narrowness. The obstructed sites showed by the two scan methods were same. The difference of the cross-sectional areas of upper airway between the two scan methods was insignificant (P>0.05).
Conclusion: Fast SPGR single slice scan can accurately reflect the obstructed sites of upper airway when the breath breaks off and is the complementary method of continuous dynamic scan. Sometimes, single slice scan can replace continuous dynamic scan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2008.05.014 | DOI Listing |
Front Physiol
May 2024
Department of Radiology, University of California, San Diego, San Diego, CA, United States.
Many spine disorders are caused by disc degeneration or endplate defects. Because nutrients entering the avascular disc are channeled through the cartilaginous endplate (CEP), structural and compositional changes in the CEP may block this solute channel, thereby hindering disc cell function. Therefore, imaging the CEP region is important to improve the diagnostic accuracy of spine disorders.
View Article and Find Full Text PDFMagn Reson Imaging
September 2024
Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA; Department of Physical Therapy and Rehabilitation Science, University of California - San Francisco, 1500 Owens Street, Suite 400, San Francisco, CA 94158, USA. Electronic address:
Limited information exists regarding abductor muscle quality variation across its length and which locations are most representative of overall muscle quality. This is exacerbated by time-intensive processes for manual muscle segmentation, which limits feasibility of large cohort analyses. The purpose of this study was to develop an automated and localized analysis pipeline that accurately estimates hip abductor muscle quality and size in individuals with mild-to-moderate hip osteoarthritis (OA) and identifies regions of each muscle which provide best estimates of overall muscle quality.
View Article and Find Full Text PDFBrain Struct Funct
June 2024
Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation.
View Article and Find Full Text PDFMagn Reson Imaging
June 2024
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile. Electronic address:
Purpose: Most T1 and T2 mapping take long acquisitions or needs specialized sequences not widely accessible on clinical scanners. An available solution is DESPOT1/T2 (Driven equilibrium single pulse observation of T1/T2). DESPOT1/T2 uses Spoiled gradient-echo (SPGR) and balanced Steady-State Free Precession (bSSFP) sequences, offering an accessible and reliable way for 3D accelerated T1/T2 mapping.
View Article and Find Full Text PDFNeuroradiology
June 2024
Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
Purpose: To evaluate the diagnostic value of T1-weighted 3D fast spin-echo sequence (CUBE) with deep learning-based reconstruction (DLR) for depiction of pituitary adenoma and parasellar regions on contrast-enhanced MRI.
Methods: We evaluated 24 patients with pituitary adenoma or residual tumor using CUBE with and without DLR, 1-mm slice thickness 2D T1WI (1-mm 2D T1WI) with DLR, and 3D spoiled gradient echo sequence (SPGR) as contrast-enhanced MRI. Depiction scores of pituitary adenoma and parasellar regions were assigned by two neuroradiologists, and contrast-to-noise ratio (CNR) was calculated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!