Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms.

Pain

Institut des Neurosciences Cellulaires et Intégratives, UMR 7168 Centre national de la Recherche Scientifique - Université Louis Pasteur, Department Nociception and Pain, 21 rue René Descartes, F-67084 Strasbourg Cedex, Strasbourg, France.

Published: October 2008

Fast Inhibitory controls mediated by glycine (GlyRs) and GABAA receptors (GABAARs) play an important role to prevent the apparition of pathological pain symptoms of allodynia and hyperalgesia. The use of positive allosteric modulators of these receptors, specifically expressed in the spinal cord, may represent an interesting strategy to limit or block pain expression. In this study, we have used stereoisomers of progesterone metabolites, acting only via non-genomic effects, in order to evaluate the contribution of GlyRs and GABAARs for the reduction of mechanical and thermal heat hypernociception. We show that 3alpha neurosteroids were particularly efficient to elevate nociceptive thresholds in naive animal. It also reduced mechanical allodynia and thermal heat hyperalgesia in the carrageenan model of inflammatory pain. This effect is likely to be mediated by GABAA receptors since 3beta isomer was inefficient. More interestingly, 3alpha5beta neurosteroid was only efficient on mechanical allodynia while having no effect on thermal heat hyperalgesia. We characterized these paradoxical effects of 3alpha5beta neurosteroid using the strychnine and bicuculline models of allodynia. We clearly show that 3alpha5beta neurosteroid exerts an antinociceptive effect via a positive allosteric modulation of GABAARs but, at the same time, is pronociceptive by reducing GlyR function. This illustrates the importance of the inhibitory amino acid receptor channels and their allosteric modulators in spinal pain processing. Moreover, our results indicate that neurosteroids, which are synthesized in the dorsal horn of the spinal cord and have limited side effects, may be of significant interest in order to treat pathological pain symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2008.06.016DOI Listing

Publication Analysis

Top Keywords

pain symptoms
12
thermal heat
12
3alpha5beta neurosteroid
12
non-genomic effects
8
nociceptive thresholds
8
gabaa receptors
8
pathological pain
8
positive allosteric
8
allosteric modulators
8
spinal cord
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!