Microcalorimetric investigation of high-surface-area mesoporous titania samples for CO2 adsorption.

Langmuir

Laboratoire Chimie Provence, Universités d'Aix-Marseille I, II et III-CNRS, UMR 6264, Centre de Saint Jérôme, 13397 Marseille, France.

Published: August 2008

Mesoporous titania powders were synthesized using the triblock copolymer F127 (PEO(106)PPO(70)PEO(106)) as a surfactant template. Two different procedures (ammonia and/or low-temperature treatment at 393 K) were successfully applied to stabilize the mesoporous structure, resulting in significantly increased surface areas and pore volumes with respect to those of the untreated titania powders. Three of these samples were chosen for further investigation by adsorption microcalorimetry. These samples are characterized by high surface areas (varying between 340 and 141 m (2) g (-1)) and a varying degree of crystallization (anatase phase). The samples were compared to nanosized anatase particles treated to 873 K. The adsorption microcalorimetry was carried out using nitrogen and carbon dioxide at 77 and 303 K, respectively, to gain complementary information about the surfaces. Nitrogen at 77 K showed, for the three samples, adsorption enthalpies at low coverage of similar values, approximately -19 to -22 kJ mol (-1), indicating that the probe gas interacts with similar energetic surface sites. Two distinct energetic regions are observed, the first of which increases with increasing pretreatment temperature, which can be related to increased sample crystallinity. The adsorption of carbon dioxide at 303 K showed high adsorption enthalpies (up to approximately 65-80 kJ mol (-1)), highlighting strong interactions of the carbon dioxide with the titania surface at low pressures. Finally, the CO(2) adsorption properties of the titania samples (adsorbed amount and enthalpies of adsorption) are compared with those of other nanosized adsorbents. This comparison shows the potentiality of mesoporous titania powders for the adsorption of CO(2).

Download full-text PDF

Source
http://dx.doi.org/10.1021/la800710qDOI Listing

Publication Analysis

Top Keywords

mesoporous titania
12
titania powders
12
carbon dioxide
12
adsorption
9
titania samples
8
co2 adsorption
8
surface areas
8
three samples
8
adsorption microcalorimetry
8
compared nanosized
8

Similar Publications

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).

View Article and Find Full Text PDF

Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.

View Article and Find Full Text PDF

Do FeO/TiO heterojunctions improve the wastewater disinfection process?

J Environ Manage

January 2025

Universidad Politécnica de Madrid (UPM), E.T.S de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y del Medio Ambiente, c/José Gutiérrez Abascal 2, 28006, Madrid, Spain. Electronic address:

This work examines the photocatalytic capacity of FeO-TiO catalysts for inactivating Enterococcus faecalis in water and compares it to a peroxide-assisted process. The influence of HO, PMS, pH, and temperature is assessed. Material stability and free radical species involved in disinfection are also evaluated.

View Article and Find Full Text PDF

UV Irradiation as a Versatile Low-Temperature Strategy for Fabricating Templated Mesoporous Titania Films.

Small

December 2024

Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.

Article Synopsis
  • Mesoporous titania thin films have potential applications in various fields such as sensors, batteries, and solar cells, but traditional methods of creating these films often require high temperatures that can damage the structures.
  • A new approach using UV irradiation is presented as a low-temperature, energy-efficient alternative that achieves comparable crystallinity and size to conventional methods, without the drawbacks of high-temperature calcination.
  • This UV method allows for the creation of diverse film morphologies and maintains consistent optical properties, demonstrating its adaptability with different titanium precursors for thin film fabrication.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!