Evaluating the contribution of maize growth to soil organic carbon is important for the understanding of the relationship of farmland carbon balance and agriculture production. 4 times of 13C pulse-labelling were used to estimate the photosynthesized carbon distribution at different development stages (seedling, elongation, heading and grain-filling) in maize-soil system, and quantify the carbon inputs into each part of belowground in whole growth season. The result indicated that the 13C retained aboveground reached its maximum: 80.01% among net assimilated 13C at grain-filling stage labelling. For the 4 labelling stages, the 13C transferred into belowground is 43.24%, 46.46%, 30.30% and 19.99% respectively, and of the 13C input into belowground, 34.68%-77.56% was respired by rhizosphere, 16.63%-57.02% was remain in roots and 5.05%-8.30% was incorporated into soil organic carbon by rhizodeposition. During the whole growth season of maize, the photosynthesized carbon allocated to aboveground, roots, rhizosphere respiration and soil organic carbon was 62.39%, 17.88%, 17.07% and 2.67% of the net assimilated carbon. At elongation, heading and grain-filling stages, maize's rhizosphere respiration accounted for 67.07%, 63.31% and 28.82% of the total CO2 efflux from the soil respectively, during the same period rhizosphere priming effect led to 31.11%, 79.09% and 120.83% increase of decomposition of original soil organic carbon respectively. Based on the calculation of 18 t x hm(-2) dry matter of maize for farmland production and its C content is 42%, the total carbon transferred into belowground is 4.6 t x hm(-2), among which 2.1 t x hm(-2) was respired by rhizoshphere, 2.2 t x hm(-2) was retained in roots and 0.33 t x hm(-2) was incorporated into soil organic carbon.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil organic
20
organic carbon
20
carbon
12
photosynthesized carbon
12
carbon distribution
8
inputs belowground
8
elongation heading
8
heading grain-filling
8
growth season
8
net assimilated
8

Similar Publications

Unraveling the drivers of optimal stomatal behavior in global C plants: A carbon isotope perspective.

Sci Total Environ

December 2024

College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

Understanding the drivers of stomatal behavior is critical for modeling terrestrial carbon cycle and water balance. The unified stomatal optimization (USO) model provides a mechanistic linkage between stomatal conductance (g) and photosynthesis (A), with its slope parameter (g) inversely related to intrinsic water use efficiency (iWUE), providing a key proxy to characterize the differences in iWUE and stomatal behavior. While many studies have identified multiple environmental factors influencing g, the potential role of evolutionary history in shaping g remains incompletely understood.

View Article and Find Full Text PDF

Soil carbon fractionation as a tool to monitor coastal wetland rehabilitation.

J Environ Manage

December 2024

School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, Waite Campus, University of Adelaide, Urrbrae, 5064, Australia. Electronic address:

Coastal wetland rehabilitation can provide nature-based solutions for climate change mitigation. The high carbon accumulation rate and carbon secured, potentially for several millennia, as soil organic carbon (SOC), is among the reasons. Measuring SOC storage and accrual over time are the main tools to understand rehabilitation success.

View Article and Find Full Text PDF

An in situ reactive zone approach using calcium peroxide for the remediation of benzene and chlorobenzene in groundwater: A field study.

J Environ Manage

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.

View Article and Find Full Text PDF

Rationale: The high-resolution measurement capability of Fourier-transform mass spectrometry (FT-MS) has made it a necessity for exploring the molecular composition of complex organic mixtures, like soil, plant, aquatic, and petroleum samples. This demand has driven a need for informatics tools to explore and analyze FT-MS data in a robust and reproducible manner.

Methods: FREDA is an interactive web application developed to enable spectrometrists to format, process, and explore their FT-MS data without the need for statistical programming expertise.

View Article and Find Full Text PDF

Microplastics Generate Less Mineral Protection of Soil Carbon and More CO Emissions.

Adv Sci (Weinh)

December 2024

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.

Microplastic pollution in terrestrial ecosystems threatens to destabilize large soil carbon stocks that help to mitigate climate change. Carbon-based substrates can release from microplastics and contribute to terrestrial carbon pools, but how these emerging organic compounds influence carbon mineralization and sequestration remains unknown. Here, microcosm experiments are conducted to determine the bioavailability of microplastic-derived dissolved organic matter (MP-DOM) in soils and its contribution to mineral-associated carbon pool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!