Background: Zucker diabetic fatty (ZDF) rat is a genetic model of type 2 diabetes and obesity. The mechanism underlying nephropathy in ZDF rats, however, remains unclear.

Methods: ZDF rats were compared to age-matched Zucker lean (ZL) rats. Physiological and blood biochemical parameters, renal glomerular cross-sectional area (hematoxylin-eosin staining), fibrosis (van Giesen staining), collagen composition (Sircol Collagen Assay), lipids (enzymatic method) and mRNA expression (RT-PCR) were determined.

Results: ZDF rats showed an increase in renal-insoluble collagen content and the ratio of renal-insoluble to salt-soluble collagen (2- and 1.5-fold of the control animals). There were increases in renal glomerulosclerosis and interstitial fibrosis in ZDF rats (increased to 2-fold) in the glomerular mesangium and tubulointerstitium, and increased glomerular area. Renal triglyceride accumulated to greater than 2-fold of those levels in ZL rats. These changes were accompanied by hypoalbuminemia, and elevated plasma blood urea nitrogen and uric acid levels. Gene profiling showed increased expression of transcripts encoding the glomerulosclerotic mediator collagens I and IV, plasminogen activator inhibitor-1, transforming growth factor-beta1, and angiotensin II type 1 receptor in ZDF rat kidney. Moreover, renal expression of mRNAs encoding sterol regulatory element-binding protein-1, a nuclear transcription factor that activates genes involved in fatty acid synthesis, and acetyl-CoA carboxylase, a key enzyme that mediates fatty acid synthesis, was increased in ZDF rats.

Conclusions: Our findings suggest that dysregulated gene expression may result in increased renal collagen cross-linking and lipid accumulation, that may be associated with development of nephropathy in the animal model of type 2 diabetes and obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dmrr.874DOI Listing

Publication Analysis

Top Keywords

zdf rats
16
increased renal
8
renal collagen
8
collagen cross-linking
8
cross-linking lipid
8
lipid accumulation
8
zucker diabetic
8
diabetic fatty
8
zdf rat
8
model type
8

Similar Publications

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

Menaquinone-7 and its therapeutic potential in type 2 diabetes mellitus based on a Zucker diabetic fatty rat model.

Heliyon

December 2024

Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.

Background: Type 2 diabetes mellitus (T2DM) is marked by insulin resistance, low grade chronic inflammation, and endothelial dysfunction. Vitamin K2, especially menaquinone-7 (MK-7), might delay T2DM progression and alleviate its consequences. Hence, this study evaluated the effects of MK-7 on serum and urine markers of diabetes in an animal model of T2DM.

View Article and Find Full Text PDF

Obesity is a significant global health challenge, increasing the risk of developing type 2 diabetes mellitus (T2DM) and cardiovascular disease. Research indicates that obese individuals, regardless of their diabetic status, have an increased risk of cardiovascular complications. Studies suggest that these patients experience impaired electrical conduction in the heart, although the underlying cause-whether due to obesity-induced fat toxicity or diabetes-related factors-remains uncertain.

View Article and Find Full Text PDF

Diabetic gastroparesis (DGP), a prevalent complication of diabetes, is characterized by delayed gastric emptying and inflammation. The dorsal motor nucleus of the vagus (DMV) plays a crucial role in modulating gastric function via the vagus nerve. Neuregulin 1 (NRG1), which is present in the DMV and influences the autonomic nervous system, has an unclear role in DGP.

View Article and Find Full Text PDF

Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats.

Free Radic Biol Med

December 2024

Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain. Electronic address:

The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!