Facile and rapid one-step mass preparation of quantum-dot barcodes.

Angew Chem Int Ed Engl

Institute of Biomaterials & Biomedical Engineering & Terrence Donnelly Center for Cellular and Biomolecular Research, Univeristy of Toronto, 160 College street, 4th floor, Toronto, ON, M5S 3G9, Canada.

Published: August 2008

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200800409DOI Listing

Publication Analysis

Top Keywords

facile rapid
4
rapid one-step
4
one-step mass
4
mass preparation
4
preparation quantum-dot
4
quantum-dot barcodes
4
facile
1
one-step
1
mass
1
preparation
1

Similar Publications

Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.

View Article and Find Full Text PDF

Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.

View Article and Find Full Text PDF

In this article, a series of novel conducting copolymers P(FuPy--EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy--EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.

View Article and Find Full Text PDF

Rapid Fabrication of Polyvinyl Alcohol Hydrogel Foams With Encapsulated Mesenchymal Stem Cells for Chronic Wound Treatment.

J Biomed Mater Res A

January 2025

Biomedical and Chemical Engineering and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA.

Chronic wounds present a major healthcare challenge around the world, and significant hurdles remain in their effective treatment due to limitations in accessible treatment options. Mesenchymal stem cells (MSCs) with multifunctional differentiation and modulatory properties have been delivered to chronic wounds to enhance closure but have limited engraftment when delivered without a scaffold. In this study, hybrid porous hydrogel foams composed of modified polyvinyl alcohol and gelatin were developed that are suitable for rapid and facile MSC encapsulation, fully degradable, and supportive of wound healing.

View Article and Find Full Text PDF

Simple and Smart Metal-Phenolic Micelles for Optimizing Immunotherapy by Disrupting Tumor Stemness.

Nano Lett

January 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.

cGAS-STING pathway activation has attracted considerable attention in antitumor immunotherapy, but clinical outcomes lag behind expectations due to overlooked negative feedback mechanisms. Here, we determine that STING activation promotes tumor stemness, which weakens the efficacy of STING-based therapies, presenting a double-edged sword. To address this therapeutic paradox, a simple metal-phenolic polymeric micelle (HMQ) was developed, in which Mn (a STING agonist) is coordinated with quercetin (a stemness inhibitor) and hyaluronic acid (HA), to unlock the full therapeutic potential of the cGAS-STING pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!