Mast cells are key effector cells of the allergic response. When stimulated by specific allergen through the high-affinity IgE receptors or through other stimuli, these cells release a number of potent mediators of inflammation. Amongst these are the serine proteases tryptase and chymase. In humans, tryptase is the most abundant mediator stored in mast cells. Chymase is present in more moderate amounts in a subpopulation of mast cells (MC(TC)). This subtype of mast cells predominates in connective tissue, whereas the other major subtype, the MC(T), predominates in mucosal tissue. Both proteases have been shown to act on specific extracellular proteins and peptides, as well as to alter the behavior of various cell types. Inhibitors of tryptase have been found to be efficacious in animal and human models of asthma, and both proteases are currently being investigated as potential targets for therapeutic intervention. Such pharmacological, physiological, and biochemical studies require the availability of purified tryptase and chymase. In this chapter, we shall describe procedures for the purification of tryptase and chymase from human tissues and provide protocols for monitoring purification and characterization of the final product. The preparation of recombinant proteases will not be covered, though some of the procedures described may be readily adapted for their purification from recombinant expression systems. The procedures described here have been developed for the purification of the human proteases and will require some modification if applied to purify mast cell proteases from the tissues of other species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-59745-366-0_25 | DOI Listing |
Oncol Res
January 2025
Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. Electronic address:
Int J Mol Sci
August 2024
Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany.
Marfan syndrome (MFS) is a hereditary condition accompanied by disorders in the structural and regulatory properties of connective tissue, including elastic fibers, due to a mutation in the gene encodes for fibrillin-1 protein (FBN1 gene) and the synthesis of abnormal fibrillin-1 glycoprotein. Despite the high potential of mast cells (MCs) to remodel the extracellular matrix (ECM), their pathogenetic significance in MFS has not been considered yet. The group of patients with Marfan syndrome included two mothers and five children (three girls aged 4, 11, and 11 and two boys aged 12 and 13).
View Article and Find Full Text PDFJ Histochem Cytochem
September 2024
Institute for Hematopathology, Hamburg, Germany.
Chronic kidney disease is detected in 8-15% of the world's population. Along with fibrotic changes, it can lead to a complete loss of organ function. Therefore, a better understanding of the onset of the pathological process is required.
View Article and Find Full Text PDFFront Immunol
August 2024
Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
Introduction: The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!