Oxalic acid is thought to be a key factor of the early pathogenicity stage in a wide range of necrotrophic fungi. Studies were conducted to determine whether oxalate could induce programmed cell death (PCD) in Arabidopsis thaliana suspension cells and to detail the transduction of the signalling pathway induced by oxalate. Arabidopsis thaliana cells were treated with millimolar concentrations of oxalate. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements. Involvement of the anion channel and ethylene in the signal transduction leading to PCD was determined by using specific inhibitors. Oxalic acid induced a PCD displaying cell shrinkage and fragmentation of DNA into internucleosomal fragments with a requirement for active gene expression and de novo protein synthesis, characteristic hallmarks of PCD. Other responses generally associated with plant cell death, such as anion effluxes leading to plasma membrane depolarization, mitochondrial depolarization, and ethylene synthesis, were also observed following addition of oxalate. The results show that oxalic acid activates an early anionic efflux which is a necessary prerequisite for the synthesis of ethylene and for the PCD in A. thaliana cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ern166DOI Listing

Publication Analysis

Top Keywords

cell death
16
oxalic acid
16
anion channel
8
ethylene synthesis
8
programmed cell
8
arabidopsis thaliana
8
thaliana cells
8
cell
5
pcd
5
channel activity
4

Similar Publications

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4 T cell count.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!