It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function. Corticosterone (1.0 or 3.0 mg/kg) administered subcutaneously to male Sprague-Dawley rats immediately after the pairing of saccharin consumption with the visceral malaise-inducing agent lithium chloride (LiCl) dose-dependently increased aversion to the saccharin taste on a 96-h retention test trial. In a second experiment, rats received corticosterone either immediately after saccharin consumption or after the LiCl injection, when both stimuli were separated by a 3-h time interval, to investigate whether corticosterone enhances memory of the gustatory or visceral stimulus presentation. Consistent with the finding that the LiCl injection, but not saccharin consumption, increases endogenous corticosterone levels, corticosterone selectively enhanced CTA memory when administered after the LiCl injection. Suppression of this training-induced release of corticosterone with the synthesis-inhibitor metyrapone (35 mg/kg) impaired CTA memory, and was dose-dependently reversed by post-training supplementation of corticosterone. Moreover, direct post-training infusions of corticosterone into the insular cortex or basolateral complex of the amygdala, two brain regions that are critically involved in the acquisition and consolidation of CTA, also enhanced CTA retention, whereas post-training infusions into the dorsal hippocampus were ineffective. These findings provide evidence that glucocorticoid effects on memory consolidation are not limited to hippocampus-dependent spatial/contextual information, but that these hormones also modulate memory consolidation of discrete-cue associative learning via actions in other brain regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2505314 | PMC |
http://dx.doi.org/10.1101/lm.964708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!