Tissue pharmacokinetics of fleroxacin in humans as determined by positron emission tomography.

Int J Antimicrob Agents

Division of Nuclear Medicine of the Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA; Center for Experimental Pharmacology and Therapeutics, Harvard-M.I.T. Division of Health Sciences and Technology, Cambridge, MA, USA; Departments of Radiology and Medicine, Harvard Medical School, Cambridge, MA, USA.

Published: July 1994

The delivery of fleroxacin, a new broad-spectrum fluoroquinolone, to the major organs of the body was studied in 12 normal human volunteers (nine men and three women), utilizing positron emission tomography (PET). Following the infusion of 20 mCi of [(18)F]fleroxacin in conjuction with a standard therapeutic dose of 400 mg, images were acquired over 8 h. Beginning the next day, the subjects received unlabeled drug at a dose of 400 mg/day for 3 days, with a repeat PET study on the fifth day. Fleroxacin is distributed widely throughout the body, with the notable exception of the central nervous system, with stable levels achieved within 1 h after completion of the infusion. Especially high peak concentrations (18 mug/g) were achieved in the kidney, liver, lung myocardium, and spleen. The mean plateau concentrations (2-8 h post-infusion, mug/g) were: brain 0.83; myocardium, 4.53; lung, 5.80, liver, 7.31; spleen, 6.00; bowel, 3.53; kidney, 8.85; bone, 2.87; muscle, 4.60; prostate, 4.65; uterus, 3.87; breast, 2.68; and blood, 2.35. Repetitive dosing had no significant effect on the pharmacokinetics of the drug. Since the MIC(90)'s of the family Enterobacterioaceae and Neisseria gonorrhoeae are <2 mug/ml, with the great majority of the individual species 1 mug/ml, these results suggest that a single daily dose of 400 mg of fleroxacin should be effective in the treatment of infections such as urinary tract infection and gonorrhea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0924-8579(94)90017-5DOI Listing

Publication Analysis

Top Keywords

positron emission
8
emission tomography
8
dose 400
8
tissue pharmacokinetics
4
pharmacokinetics fleroxacin
4
fleroxacin humans
4
humans determined
4
determined positron
4
tomography delivery
4
delivery fleroxacin
4

Similar Publications

Noninvasive imaging of β-amyloid is pivotal for the early diagnosis of Alzheimer's disease (AD). While single imaging methods have been extensively studied for detecting Aβ over the past decade, dual-modal probes have received scant attention. In this study, we synthesized and assessed a series of half-curcumin probes, among which demonstrated a high affinity and selectivity for Aβ aggregates.

View Article and Find Full Text PDF

Purpose: Local recurrence of prostate cancer (PCa) after radiation therapy (RT) typically occurs at the site of dominant tumor burden, and recent evidence confirms that magnetic resonance imaging (MRI) guided tumor dose escalation improves outcomes. With the emergence of prostate-specific membrane antigen (PSMA) positron emission tomography (PET), we hypothesize that PSMA-PET and MRI may not equally depict the region most at risk of recurrence after RT.

Methods And Materials: Patients with intermediate- to high-risk PCa and MRI plus PSMA-PET performed before RT were identified.

View Article and Find Full Text PDF

Introduction: Folate receptors (FR) have been considered a convenient target for different radiopharmaceuticals in recent years. Multifarious Ga-labeled folate conjugates have been proposed as promising agents for the PET imaging of FR-overexpressing malignant neoplasms. In addition, radiolabeled folate-based conjugates can be effective for imaging non-tumor pathological foci characterized by a pronounced cluster of activated macrophages.

View Article and Find Full Text PDF

Characterization of Cutaneous Radiation Syndrome in a Mouse Model Using [18F]F- Fluorodeoxyglucose Positron Emission Tomography.

Health Phys

January 2025

Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL.

Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.

View Article and Find Full Text PDF

Background: The association between skeletal muscle and adipose tissue (body composition) and early response using positron emission tomography (PET) in pediatric Hodgkin lymphoma (HL) remains unstudied.

Methods: Patients enrolled on Children's Oncology Group studies AHOD0031 (intermediate-risk HL) and AHOD0831 (high-risk HL) with digital abdominal computed tomography (CT) scans at diagnosis and PET scans after 2 cycles (PET2) were included. Two consecutive slices at the third lumbar vertebra were identified and skeletal muscle index (SMI, in cm2/m2) and total adipose tissue index (TATI, in cm2/m2) were calculated using sliceOmatic (Magog, Canada) and height at diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!