GD1a is the major ganglioside of rabbit brain microsomal membranes and occurs mainly with two molecular species, containing the C18:1 (62.3%) and C20:1 (37.7%) long-chain bases. The membranes were exposed to Vibrio cholerae (VC) sialidase under conditions where the enzyme hydrolyzed only GD1a (approximately 9%), producing GM1 ganglioside, whereas the other gangliosides remained virtually unaffected. The long-chain-base analysis showed that newly-formed GM1 contained approximately 68% of the C20:1 molecular species. This indicates that VC sialidase did not randomly affect the two molecular species of GD1a but hydrolyzed preferentially the C20:1 one. In similar experiments, GD1a was inserted into the external layer of phosphatidylcholine vesicles and incubated with VC sialidase under conditions producing approximately 10% hydrolysis. Long-chain-base analysis showed that the proportion of C20:1 species in GM1 was 25.1% using vesicles composed of dipalmitoylphosphatidylcholine and 42.3% with egg phosphatidylcholine, whereas it was 39.2% in the starting GD1a. Therefore, in artificial membranes, VC sialidase acted preferentially on the C18:1 or C20:1 molecular species, depending on the length and unsaturation of the phospholipid fatty acids. Because VC sialidase is known to affect molecular dispersions more easily than packed aggregations of the gangliosidic substrate, the data suggest that in rabbit brain microsomal membranes the GD1a ganglioside molecular species carrying C20:1 long-chain base are more molecularly dispersed than those containing C18:1 long-chain base.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1991.tb08215.x | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
DeWorm3 Project, Seattle, Washington, United States of America.
Background: Historically, soil-transmitted helminth (STH) control and prevention strategies have relied on mass drug administration efforts targeting preschool and school-aged children. While these efforts have succeeded in reducing morbidity associated with STH infection, recent modeling efforts have suggested that expanding intervention to treatment of the entire community could achieve transmission interruption in some settings. Testing the feasibility of such an approach requires large-scale clinical trials, such as the DeWorm3 cluster randomized trial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!