We describe a method for sensitive monitoring of restriction endonuclease kinetics and activity by use of a universal molecular beacon (U-MB) coupled with real-time polymerase chain reaction (PCR). The method is used to monitor the progress of DNA cleavage in a sealed reaction tube and offers more accurate and high-throughput detection. The template has a universal tail hybridized with the U-MB and the remaining sequence is complementary to one of the restriction endonuclease digestion products. The U-MB is replaced by the extension of digested product and the fluorescence quenches. With this concept, one universal fluorescence probe can be used in different enzyme analytical systems. In the work described here, homogenous assays were performed with the restriction endonucleases AluI, EcoRI, XhoI, and SacI at smoothly controlled temperature. Cleavage efficiencies were determined, and the potential applications of this method were discussed. Furthermore, the AluI and EcoRI cleavage reactions were monitored online at varying substrate concentrations at the molecular level, and K(m), V(max), and K(cat) values were calculated. The results suggest that U-MB monitoring of restriction endonuclease assays based on real-time PCR will be very useful for high-throughput, sensitive, and precise assays for enzyme activity screening and evolutionary biotechnology analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2008.06.027 | DOI Listing |
Biosensors (Basel)
December 2024
Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China.
Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Invasive Fungi Research Center, Communicable Diseases Institute/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Keratinophilic fungi, or dermatophytes, are recognized as the predominant fungal agents responsible for superficial skin diseases globally. The identification of species of dermatophytes is crucial for both therapeutic and epidemiological considerations. The primary objective of the present study was to investigate the epidemiology of dermatophytosis among patients who sought medical attention at the medical mycology laboratory in Golestan province.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1.
View Article and Find Full Text PDFACS Omega
December 2024
Experiment Research Center, Capital Institute of Pediatrics, Beijing 100020, PR China.
Invasive meningococcal disease, caused by (), is a critical global health issue, necessitating swift and precise diagnostics for effective management and control. Here, we introduce a novel diagnostic assay, NM-RT-MCDA, that combines multiple cross displacement amplification (MCDA) with real-time fluorescence detection, targeting a specific gene region in the genome. The assay utilizes a primer set designed for high specificity and incorporates a fluorophore-quencher pair with a restriction endonuclease site for real-time monitoring.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow oblast, 141707 Russia.
The ArdA DNA-mimic antirestriction proteins inhibit type I restriction-modification (RMI) systems by binding instead of DNA to RMI. The ArdA specificity to DNA methylation sites recognized by RMI complexes remains poorly understood; i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!