A combined computational and experimental investigation provides evidence that excited thorium and uranium atoms activate ethane to form the vinyl metal trihydride, metallacyclopropane dihydride, and ethylidene metal dihydride for thorium and the latter complex and the inserted ethyl metal hydride for uranium. These products are trapped in solid argon and identified through deuterium isotopic substitution and vibrational frequencies calculated by density functional theory. Comparisons are made with group 4 and methane reaction products. Numerous calculations using several methods show that these simple ethylidene complexes are more distorted by the agostic interaction than the corresponding methylidene species. This enhanced agostic interaction probably arises from methyl hydrogen to alpha-H repulsions, which leads to a substantial decrease in the alpha-H to Th agostic interaction distance, and contributes to our understanding of agostic distortion in organometallic complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp801692sDOI Listing

Publication Analysis

Top Keywords

agostic interaction
12
metallacyclopropane dihydride
8
vinyl metal
8
metal trihydride
8
metal
5
reactions actinide
4
actinide metal
4
metal atoms
4
atoms ethane
4
ethane computation
4

Similar Publications

Cross-Dehydrogenative Coupling of Secondary Amines with Silanes Catalyzed by Agostic Iridium-NSi Species.

Inorg Chem

December 2024

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain.

An active catalytic system for the cross-dehydrogenative coupling (CDC) of a wide range of secondary amines with silanes is reported. The iridium(III) derivatives [Ir(H)(X)(κ-NSi)(L)] (NSi = {4,8-dimethylquinoline-2-yloxy}dimethylsilyl; L = coe, X = Cl, ; L = coe, X = OTf, ; L = PCy, X = Cl, ; L = PCy X = OTf, ), which are stabilized by a weak yet noticeable Ir···H-C agostic interaction between the iridium and one of the C-H bonds of the 8-Me substituent of the NSi ligand, have been prepared and fully characterized. These species have proven to be effective catalysts for the CDC of secondary amines with hydrosilanes.

View Article and Find Full Text PDF

T-shaped 14 Electron Rhodium Complexes: Potential Active Species in C-H Activation.

Angew Chem Int Ed Engl

December 2024

Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.

Two T-shaped 14-electron rhodium complexes 2 a and 2 b, "framed" and thus stabilized by PNP pincer ligands have been synthesized. The bis(t-butyl)phosphine derived PNP-rhodium complex 2 a was isolated from pentane as the more stable cyclometalated Rh(III) hydrido complex and found to be in equilibrium with the T-shaped 14e Rh(I) complex 2 aT which itself could be directly crystallized upon change of the solvent. The cyclometallation is suppressed using an adamantyl substituted PNP ligand to give the analogous T-shaped Rh(I) species 2 b, stabilized through an agostic interaction with one of the adamantyl C-Hs.

View Article and Find Full Text PDF

In our recent work, we revisited C-H and C-C bond activation in rhodium (I) complexes of pincer ligands PCP, PCN, PCO, POCOP, and SCS. Our findings indicated that an η-CCH agostic intermediate acts as a common precursor to both C-C and C-H bond activation in these systems. We explore the electronic structure and bonding nature of these precleavage complexes using electron density and molecular orbital analyses.

View Article and Find Full Text PDF

The structures and energetics of the binuclear methylphosphinidene complexes of cyclopentadienylruthenium carbonyls of the type [MePRu(CO)Cp] ( = 4, 3, 2, 1) have been investigated for comparison with their previously studied iron analogues. For the tetracarbonyls and tricarbonyls [MePM(CO)Cp] ( = 4, 3) substituting ruthenium for iron has relatively little effect on the energetically preferred structures. Thus such structures have two-electron donor bridging MeP groups with no metal-metal bond for the tetracarbonyls and a metal-metal single bond for the tricarbonyls.

View Article and Find Full Text PDF

Unlike cyclopropanes, the analogous BC species (diboriranes) tend to adopt non-classical Hückel-aromatic structures with bridging moieties R between the boron atoms. The coordination of the thus generated cyclic 2e π-system to transition metals is completely unexplored. We here report that complexation of non-classical diboriranes cyclo-μ-RBDurCPh (R=H, SnMe; Dur=2,3,5,6-tetramethylphenyl) to Fe(CO) fragments allows for the carbonylative ring expansion of the BC ring to either four- or five-membered rings depending on the nature of the BRB 3-center-2-electron bond (3c2e): The H-bridged diborirane (R=H) initially reacts with Fe(CO) to the allylic π-complex with an agostic BH/Fe interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!